Anomaly Detection using Similarity Approach on Airline Data

Utpal Kumar Sikdar, K. M. Kumar
{"title":"Anomaly Detection using Similarity Approach on Airline Data","authors":"Utpal Kumar Sikdar, K. M. Kumar","doi":"10.21467/proceedings.115.15","DOIUrl":null,"url":null,"abstract":"Anomaly detection is to identify abnormal items, events or observations from the majority of the data. We applied similarity approaches to identify the abnormal observations from the Airline Data on chargeable weight. Chargeable weight is what the airline uses to determine the cost of the shipment. It may be either volumetric weight or gross weight, whichever is greater. Similarity approaches are applied to identify the abnormal observations on chargeable weight and evaluated the systems with the airline data. The precision, recall and F-measure values of the best system are 41.12%, 54.91% and 47.02% respectively.","PeriodicalId":413368,"journal":{"name":"Proceedings of Intelligent Computing and Technologies Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Intelligent Computing and Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/proceedings.115.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection is to identify abnormal items, events or observations from the majority of the data. We applied similarity approaches to identify the abnormal observations from the Airline Data on chargeable weight. Chargeable weight is what the airline uses to determine the cost of the shipment. It may be either volumetric weight or gross weight, whichever is greater. Similarity approaches are applied to identify the abnormal observations on chargeable weight and evaluated the systems with the airline data. The precision, recall and F-measure values of the best system are 41.12%, 54.91% and 47.02% respectively.
基于相似度方法的航空数据异常检测
异常检测是从大部分数据中识别异常的项目、事件或观察结果。我们应用相似度方法从航空公司收费重量数据中识别异常观测。收费重量是航空公司用来确定运输成本的标准。它可以是体积重量或毛重,以较大者为准。应用相似度方法识别收费重量异常观测值,并用航空公司数据对系统进行评估。最佳系统的精密度、召回率和f测量值分别为41.12%、54.91%和47.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信