KL-Mat: Fair Recommender System via Information Geometry

Hao Wang
{"title":"KL-Mat: Fair Recommender System via Information Geometry","authors":"Hao Wang","doi":"10.1145/3514105.3514107","DOIUrl":null,"url":null,"abstract":"Recommender system has intrinsic problems such as sparsity and fairness. Although it has been widely adopted for the past decades, research on fairness of recommendation algorithms has been largely neglected until recently. One important paradigm for resolving the issue is regularization. However, researchers have not been able to come up with a consensusly agreed regularization term like regularization framework in other fields such as Lasso or Ridge Regression. In this paper, we borrow concepts from information geometry and propose a new regularization-based fair algorithm called KL-Mat. The algorithmic technique leads to a more robust performance in accuracy performance such as MAE. More importantly, the algorithm produces much fairer results than vanilla matrix factorization approach. KL-Mat is fast, easy-to-implement and explainable.","PeriodicalId":360718,"journal":{"name":"Proceedings of the 2022 9th International Conference on Wireless Communication and Sensor Networks","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 9th International Conference on Wireless Communication and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3514105.3514107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recommender system has intrinsic problems such as sparsity and fairness. Although it has been widely adopted for the past decades, research on fairness of recommendation algorithms has been largely neglected until recently. One important paradigm for resolving the issue is regularization. However, researchers have not been able to come up with a consensusly agreed regularization term like regularization framework in other fields such as Lasso or Ridge Regression. In this paper, we borrow concepts from information geometry and propose a new regularization-based fair algorithm called KL-Mat. The algorithmic technique leads to a more robust performance in accuracy performance such as MAE. More importantly, the algorithm produces much fairer results than vanilla matrix factorization approach. KL-Mat is fast, easy-to-implement and explainable.
KL-Mat:基于信息几何的公平推荐系统
推荐系统存在稀疏性和公平性等内在问题。虽然在过去的几十年里,推荐算法的公平性已经被广泛采用,但直到最近,关于推荐算法公平性的研究在很大程度上被忽视了。解决这个问题的一个重要范例是正则化。然而,像Lasso或Ridge回归等其他领域的正则化框架那样,研究人员还没有提出一个大家都同意的正则化术语。本文借用信息几何的概念,提出了一种新的基于正则化的公平算法KL-Mat。该算法技术在精度性能方面具有更强的鲁棒性,如MAE。更重要的是,该算法产生的结果比传统的矩阵分解方法更加公平。KL-Mat是快速,易于实现和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信