Improved Genetic Algorithm for the Regional Multi-line Bus Dispatching

Jinling Du, L. Cao
{"title":"Improved Genetic Algorithm for the Regional Multi-line Bus Dispatching","authors":"Jinling Du, L. Cao","doi":"10.1109/CIS.2013.183","DOIUrl":null,"url":null,"abstract":"Bus trip is a healthy way to travel, and optimal bus dispatching decides social and economic benefits. Based on the analysis for both the existing traffic environment and bus dispatching, a mathematical model of the regional multi-line bus dispatching within is proposed in this paper such that the goal function of this model are the average maximal satisfaction for passengers, the average loading rate of the maximum and the minimal average bus departure frequency of the bus company, respectively. Furthermore, the genetic algorithm is improved further to prevent premature for the algorithm and ensure fast convergence of the algorithm. Finally, case analysis gives a satisfying departure interval for each time period in a day and verifies the effectiveness of the algorithm.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bus trip is a healthy way to travel, and optimal bus dispatching decides social and economic benefits. Based on the analysis for both the existing traffic environment and bus dispatching, a mathematical model of the regional multi-line bus dispatching within is proposed in this paper such that the goal function of this model are the average maximal satisfaction for passengers, the average loading rate of the maximum and the minimal average bus departure frequency of the bus company, respectively. Furthermore, the genetic algorithm is improved further to prevent premature for the algorithm and ensure fast convergence of the algorithm. Finally, case analysis gives a satisfying departure interval for each time period in a day and verifies the effectiveness of the algorithm.
区域多线路公交调度的改进遗传算法
公交出行是一种健康的出行方式,最优的公交调度决定着社会效益和经济效益。本文在对现有交通环境和公交调度进行分析的基础上,提出了区域内多线公交调度的数学模型,该模型的目标函数分别为公交公司的平均最大乘客满意度、最大平均上座率和最小平均发车频率。进一步改进了遗传算法,避免了算法的早熟,保证了算法的快速收敛。最后通过实例分析,给出了一天中各个时间段的满意出发间隔,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信