Large-Scale Precision Matrix Estimation With SQUIC

Aryan Eftekhari, Lisa Gaedke-Merzhaeuser, D. Pasadakis, M. Bollhoefer, S. Scheidegger, O. Schenk
{"title":"Large-Scale Precision Matrix Estimation With SQUIC","authors":"Aryan Eftekhari, Lisa Gaedke-Merzhaeuser, D. Pasadakis, M. Bollhoefer, S. Scheidegger, O. Schenk","doi":"10.2139/ssrn.3904001","DOIUrl":null,"url":null,"abstract":"High-dimensional sparse precision matrix estimation is a ubiquitous task in multivariate analysis with applications that cross many disciplines. In this paper, we introduce the SQUIC package, which benefits from superior runtime performance and scalability, significantly exceeding the available state-of-the-art packages. This package is a second-order method that solves the L1--regularized maximum likelihood problem using highly optimized linear algebra subroutines, which leverage the underlying sparsity and the intrinsic parallelism in the computation. We provide two sets of numerical tests; the first one consists of didactic examples using synthetic datasets highlighting the performance and accuracy of the package, and the second one is a real-world classification problem of high dimensional medical datasets. The base algorithm is implemented in C++ with interfaces for R and Python.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3904001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-dimensional sparse precision matrix estimation is a ubiquitous task in multivariate analysis with applications that cross many disciplines. In this paper, we introduce the SQUIC package, which benefits from superior runtime performance and scalability, significantly exceeding the available state-of-the-art packages. This package is a second-order method that solves the L1--regularized maximum likelihood problem using highly optimized linear algebra subroutines, which leverage the underlying sparsity and the intrinsic parallelism in the computation. We provide two sets of numerical tests; the first one consists of didactic examples using synthetic datasets highlighting the performance and accuracy of the package, and the second one is a real-world classification problem of high dimensional medical datasets. The base algorithm is implemented in C++ with interfaces for R and Python.
基于SQUIC的大尺度精度矩阵估计
高维稀疏精度矩阵估计是多变量分析中普遍存在的一项任务,其应用涉及多个学科。在本文中,我们介绍了SQUIC包,它受益于卓越的运行时性能和可伸缩性,大大超过了现有的最先进的包。这个包是一种二阶方法,它使用高度优化的线性代数子例程来解决L1-正则化的最大似然问题,这些子例程利用了计算中的潜在稀疏性和内在并行性。我们提供了两套数值测试;第一个由使用合成数据集的教学示例组成,突出了包的性能和准确性,第二个是高维医疗数据集的现实世界分类问题。基本算法是用c++实现的,带有R和Python接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信