UPM

Asmaa Elbadrawy, G. Karypis
{"title":"UPM","authors":"Asmaa Elbadrawy, G. Karypis","doi":"10.1145/3303772.3303799","DOIUrl":null,"url":null,"abstract":"Identifying enrollment patterns associated with course success can help educators design better degree plans, and students make informed decisions about future enrollments. While discriminating pattern mining techniques can be used to address this problem, course enrollment patterns include sequence and quantity (grades) information. None of the existing methods were designed to account for both factors. In this work we present UPM, a Universal discriminating Pattern Mining framework that simultaneously mines various types of enrollment patterns while accounting for sequence and quantity using an expansion-specific approach. Unlike the existing methods, UPM expands a given pattern with an item by finding a minimum-entropy split over the item's quantities. We then use UPM to extract discriminating enrollment patterns from the high and the low performing student groups. These patterns can be utilized by educators for degree planning. To evaluate the quality of the extracted patterns, we adopt a supervised classification approach where we apply various classification techniques to label students according tho their performance based on the extracted patterns. Our evaluation shows that the classification accuracies obtained using the UPM extracted patterns are higher than the accuracies obtained using patterns extracted by other techniques. Accuracy improves significantly for students with larger numbers of patterns. Moreover, expansion-specific quantitative mining leads to more accurate classifications than the methods that do not account for quantities (grades).","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Identifying enrollment patterns associated with course success can help educators design better degree plans, and students make informed decisions about future enrollments. While discriminating pattern mining techniques can be used to address this problem, course enrollment patterns include sequence and quantity (grades) information. None of the existing methods were designed to account for both factors. In this work we present UPM, a Universal discriminating Pattern Mining framework that simultaneously mines various types of enrollment patterns while accounting for sequence and quantity using an expansion-specific approach. Unlike the existing methods, UPM expands a given pattern with an item by finding a minimum-entropy split over the item's quantities. We then use UPM to extract discriminating enrollment patterns from the high and the low performing student groups. These patterns can be utilized by educators for degree planning. To evaluate the quality of the extracted patterns, we adopt a supervised classification approach where we apply various classification techniques to label students according tho their performance based on the extracted patterns. Our evaluation shows that the classification accuracies obtained using the UPM extracted patterns are higher than the accuracies obtained using patterns extracted by other techniques. Accuracy improves significantly for students with larger numbers of patterns. Moreover, expansion-specific quantitative mining leads to more accurate classifications than the methods that do not account for quantities (grades).
芬欧蓝
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信