Bi-incomplete Tambara Functors

A. Blumberg, M. Hill
{"title":"Bi-incomplete Tambara Functors","authors":"A. Blumberg, M. Hill","doi":"10.1017/9781108942874.009","DOIUrl":null,"url":null,"abstract":"For an equivariant commutative ring spectrum $R$, $\\pi_0 R$ has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If $R$ is an $N_\\infty$ ring spectrum in the category of genuine $G$-spectra, then all possible additive transfers are present and $\\pi_0 R$ has the structure of an incomplete Tambara functor. However, if $R$ is an $N_\\infty$ ring spectrum in a category of incomplete $G$-spectra, the situation is more subtle. In this paper, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.","PeriodicalId":104493,"journal":{"name":"Equivariant Topology and Derived Algebra","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equivariant Topology and Derived Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108942874.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For an equivariant commutative ring spectrum $R$, $\pi_0 R$ has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If $R$ is an $N_\infty$ ring spectrum in the category of genuine $G$-spectra, then all possible additive transfers are present and $\pi_0 R$ has the structure of an incomplete Tambara functor. However, if $R$ is an $N_\infty$ ring spectrum in a category of incomplete $G$-spectra, the situation is more subtle. In this paper, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.
双不完全Tambara函子
对于等变交换环谱$R$, $\pi_0 R$具有反映加性转移和乘性范数同时存在的代数结构。加性结构产生麦基函子,而乘性结构产生坦巴拉函子的附加结构。如果$R$是一个真正的$G$ -谱中的$N_\infty$环谱,则所有可能的加性转移都存在,并且$\pi_0 R$具有不完全Tambara函子的结构。然而,如果$R$是不完全$G$ -光谱中的一个$N_\infty$环谱,情况就更加微妙了。本文研究了不完全Mackey函子(双不完全Tambara函子)上Tambara结构的代数理论。就像不完全Tambara函子有相容条件来控制哪个系统的范数是可能的一样,双不完全Tambara函子也有由转移和范数可能的相互作用产生的代数约束。我们给出了加法和乘法结构之间可能的相互作用的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信