BERT Model for Fake News Detection Based on Social Bot Activities in the COVID-19 Pandemic

Maryam Heidari, Samira Zad, P. Hajibabaee, Masoud Malekzadeh, SeyyedPooya HekmatiAthar, Özlem Uzuner, James H. Jones
{"title":"BERT Model for Fake News Detection Based on Social Bot Activities in the COVID-19 Pandemic","authors":"Maryam Heidari, Samira Zad, P. Hajibabaee, Masoud Malekzadeh, SeyyedPooya HekmatiAthar, Özlem Uzuner, James H. Jones","doi":"10.1109/UEMCON53757.2021.9666618","DOIUrl":null,"url":null,"abstract":"In the global pandemic, social media platforms are the primary source of information exchange. Social bots are one of the main sources of misinformation in the COVID-19 pandemic but do social bots spread the fake and real news with the same ratio as human accounts on social media platforms? Can bot detection improve fake news detection on social media platforms? Who presents more fake news in the COVID-19 pandemic, Human or social bots? This work provides preliminary research results based on limited data to answer these questions, but it opens a new perspective on fake news detection and bot detection on online platforms. We use Bidirectional Encoder Representations from Transformers(BERT) to create a new model for fake news detection. We use the transfer learning model to detect bot accounts in the COVID-19 data set. Then apply new features to improve the new fake news detection model in the COVID-19 data set.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON53757.2021.9666618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In the global pandemic, social media platforms are the primary source of information exchange. Social bots are one of the main sources of misinformation in the COVID-19 pandemic but do social bots spread the fake and real news with the same ratio as human accounts on social media platforms? Can bot detection improve fake news detection on social media platforms? Who presents more fake news in the COVID-19 pandemic, Human or social bots? This work provides preliminary research results based on limited data to answer these questions, but it opens a new perspective on fake news detection and bot detection on online platforms. We use Bidirectional Encoder Representations from Transformers(BERT) to create a new model for fake news detection. We use the transfer learning model to detect bot accounts in the COVID-19 data set. Then apply new features to improve the new fake news detection model in the COVID-19 data set.
基于社交机器人活动的新冠疫情假新闻检测BERT模型
在全球大流行中,社交媒体平台是信息交流的主要来源。在新冠疫情中,社交机器人是错误信息的主要来源之一,但社交机器人在社交媒体平台上传播假新闻和真实新闻的比例是否与人类账户相同?机器人检测能提高社交媒体平台上的假新闻检测吗?在COVID-19大流行中,人类和社交机器人谁发布的假新闻更多?这项工作基于有限的数据提供了初步的研究结果来回答这些问题,但它为在线平台上的假新闻检测和机器人检测开辟了新的视角。我们使用来自变形金刚的双向编码器表示(BERT)来创建一个新的假新闻检测模型。我们使用迁移学习模型来检测COVID-19数据集中的bot账户。然后在COVID-19数据集中应用新的特征来改进新的假新闻检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信