Time interval-aware graph with self-attention for sequential recommendation

Zhuo Chen, Weiwei Wang
{"title":"Time interval-aware graph with self-attention for sequential recommendation","authors":"Zhuo Chen, Weiwei Wang","doi":"10.1145/3579654.3579729","DOIUrl":null,"url":null,"abstract":"Sequential recommendation, as a branch under the recommendation system, obtains the user’s interest changes from the user’s interaction history to predict the next item. The neural network structure, Transformer and Graph Neural Networks (GNN) have been widely used in recommendation systems due to their ability to represent sequences and capture high-order information. However, previous models only rank actions in the time order of occurrence, ignoring the effect of the time interval between adjacent actions, which usually reflects the user’s preferences. To fully use time information, we design the Time Interval-aware Graph with Self-attention for sequential recommendation (TIGSA). Specifically, we first construct a time interval-aware graph, which integrates the information of different time intervals in all user action sequences. The time interval of two items determines the weight of each edge in the graph. Then the item model combined with the time interval information is obtained through the Graph Convolutional Networks (GCN). Finally, the self-attention block is used to adaptively compute the attention weights of the items in the sequence. Experiments show that our method outperforms other recommendation models on three public datasets and different evaluation metrics.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential recommendation, as a branch under the recommendation system, obtains the user’s interest changes from the user’s interaction history to predict the next item. The neural network structure, Transformer and Graph Neural Networks (GNN) have been widely used in recommendation systems due to their ability to represent sequences and capture high-order information. However, previous models only rank actions in the time order of occurrence, ignoring the effect of the time interval between adjacent actions, which usually reflects the user’s preferences. To fully use time information, we design the Time Interval-aware Graph with Self-attention for sequential recommendation (TIGSA). Specifically, we first construct a time interval-aware graph, which integrates the information of different time intervals in all user action sequences. The time interval of two items determines the weight of each edge in the graph. Then the item model combined with the time interval information is obtained through the Graph Convolutional Networks (GCN). Finally, the self-attention block is used to adaptively compute the attention weights of the items in the sequence. Experiments show that our method outperforms other recommendation models on three public datasets and different evaluation metrics.
时序推荐的具有自关注的时间间隔感知图
顺序推荐作为推荐系统的一个分支,从用户的交互历史中获取用户的兴趣变化来预测下一个项目。神经网络结构,变压器和图神经网络(GNN)由于其表示序列和捕获高阶信息的能力而被广泛应用于推荐系统中。然而,以前的模型只是按照发生的时间顺序对动作进行排序,忽略了相邻动作之间时间间隔的影响,而时间间隔通常反映的是用户的偏好。为了充分利用时间信息,我们设计了时序推荐的自关注时间间隔感知图(TIGSA)。具体而言,我们首先构建了一个时间间隔感知图,该图集成了所有用户动作序列中不同时间间隔的信息。两个项目的时间间隔决定了图中每条边的权重。然后通过图卷积网络(GCN)得到与时间间隔信息相结合的项目模型。最后,利用自注意块自适应计算序列中项目的注意权值。实验表明,我们的方法在三个公共数据集和不同的评价指标上优于其他推荐模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信