A recommender system based on the collaborative behavior of bird flocks

Esin Saka, O. Nasraoui
{"title":"A recommender system based on the collaborative behavior of bird flocks","authors":"Esin Saka, O. Nasraoui","doi":"10.4108/ICST.COLLABORATECOM.2010.11","DOIUrl":null,"url":null,"abstract":"This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.","PeriodicalId":354101,"journal":{"name":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.
基于鸟群协同行为的推荐系统
本文提出了一种基于群智能的推荐系统(FlockRecom),该系统基于鸟群的协同行为生成Top-N推荐。基于群体的推荐算法(FlockRecom)迭代地调整可视化面板上动态群体的位置和速度。通过使用可视化面板上的相邻代理,生成top-n的建议。使用Jester Dataset-2对FlockRecom的性能进行了评估,并与传统的基于协同过滤的推荐系统进行了比较。在实际数据上的实验说明了推荐系统的工作原理及其相对于CF基线的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信