Mining Association Rules from Fuzzy DataCubes

Nicolás Marín, C. Molina, D. Sánchez, M. Vila
{"title":"Mining Association Rules from Fuzzy DataCubes","authors":"Nicolás Marín, C. Molina, D. Sánchez, M. Vila","doi":"10.4018/978-1-60566-858-1.CH004","DOIUrl":null,"url":null,"abstract":"The use of online analytical processing (OLAP) systems as data sources for data mining techniques has been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result of both the use of OLAP technology in new fields of knowledge and the merging of data from different sources, it has become necessary for models to support imprecision. We, therefore, need OLAM methods which are able to deal with this imprecision. Association rules are one of the most used data mining techniques. There are several proposals that enable the extraction of association rules on DataCubes but few of these deal with imprecision in the process and give as result complex rule sets. In this chapter the authors will present a method that manages the imprecision and reduces the complexity. They will study the influence of the use of fuzzy logic using different size problems and comparing the results with a crisp approach.","PeriodicalId":293388,"journal":{"name":"Scalable Fuzzy Algorithms for Data Management and Analysis","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Fuzzy Algorithms for Data Management and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-858-1.CH004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The use of online analytical processing (OLAP) systems as data sources for data mining techniques has been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result of both the use of OLAP technology in new fields of knowledge and the merging of data from different sources, it has become necessary for models to support imprecision. We, therefore, need OLAM methods which are able to deal with this imprecision. Association rules are one of the most used data mining techniques. There are several proposals that enable the extraction of association rules on DataCubes but few of these deal with imprecision in the process and give as result complex rule sets. In this chapter the authors will present a method that manages the imprecision and reduces the complexity. They will study the influence of the use of fuzzy logic using different size problems and comparing the results with a crisp approach.
从模糊数据库中挖掘关联规则
使用在线分析处理(OLAP)系统作为数据挖掘技术的数据源已经得到了广泛的研究,并导致了所谓的在线分析挖掘(OLAM)。由于在新的知识领域中使用OLAP技术以及合并来自不同来源的数据,模型必须支持不精确。因此,我们需要能够处理这种不精确的OLAM方法。关联规则是最常用的数据挖掘技术之一。有几个建议可以在DataCubes上提取关联规则,但是这些建议中很少处理过程中的不精确,并给出复杂的规则集。在本章中,作者将提出一种管理不精确和降低复杂性的方法。他们将使用不同大小的问题来研究模糊逻辑的影响,并用清晰的方法比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信