Switched reluctance motor control with artificial neural networks

J.J. Garside, R. Brown, A. Arkadan
{"title":"Switched reluctance motor control with artificial neural networks","authors":"J.J. Garside, R. Brown, A. Arkadan","doi":"10.1109/IEMDC.1997.604206","DOIUrl":null,"url":null,"abstract":"This paper presents a new control scheme for switched reluctance motor drives based on artificial neural networks (ANN). The ANNs are trained to generate drive circuitry phase current references for velocity reference tracking. A new, application specific ANN architecture is used to improve modeling accuracy. The control ANNs are trained using data from a state space model. The control scheme characteristics are then presented via two case studies. Firstly, a constant velocity control is simulated and a comparison with previously measured results is presented. A velocity reference tracking case study is then presented.","PeriodicalId":176640,"journal":{"name":"1997 IEEE International Electric Machines and Drives Conference Record","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE International Electric Machines and Drives Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.1997.604206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a new control scheme for switched reluctance motor drives based on artificial neural networks (ANN). The ANNs are trained to generate drive circuitry phase current references for velocity reference tracking. A new, application specific ANN architecture is used to improve modeling accuracy. The control ANNs are trained using data from a state space model. The control scheme characteristics are then presented via two case studies. Firstly, a constant velocity control is simulated and a comparison with previously measured results is presented. A velocity reference tracking case study is then presented.
开关磁阻电机的人工神经网络控制
提出了一种基于人工神经网络的开关磁阻电机驱动控制新方案。训练人工神经网络生成驱动电路相电流参考以进行速度参考跟踪。采用了一种新的、特定于应用的人工神经网络体系结构来提高建模精度。控制人工神经网络使用来自状态空间模型的数据进行训练。然后通过两个案例研究介绍了控制方案的特点。首先对恒速控制进行了仿真,并与实测结果进行了比较。然后给出了一个速度参考跟踪的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信