STSM- a model to detect and predict large crowd anomalies for optimized path recomendation

Bilal Sadiq, Akhlaq Ahmad, S. Atta, Emad A. Felemban, Khalid Qahtani
{"title":"STSM- a model to detect and predict large crowd anomalies for optimized path recomendation","authors":"Bilal Sadiq, Akhlaq Ahmad, S. Atta, Emad A. Felemban, Khalid Qahtani","doi":"10.1109/SDS.2017.7939134","DOIUrl":null,"url":null,"abstract":"Cultural diversity of large crowds is one of the major concerns when participants overstep the predefined guidelines. Such behaviors eradicate crowds' safety, resulting massive casualties. Advent of tracking devices and smartphones with multiple sensing abilities can leverage to capture crowds' real-time spatio-temporal (ST) data to serve emergency service plans. In this paper, we present a Spatio-Temporal Service Model (STSM) that can detect and predict anomalies with in a very large crowd. The model correlates crowd's real-time information with past user's ST-Data and their traffic mobility, and alerts all stockholders and recommends optimized path to shelter points and safe exits for any possible disaster. As a case study, tracking devices were deployed to capture spatio-temporal information of about 2970 vehicles used for pilgrims' mobility during Hajj 2016 event. The data analysis is summarized and basis the functionalities of the model for future pilgrimage.","PeriodicalId":326125,"journal":{"name":"2017 Fourth International Conference on Software Defined Systems (SDS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Software Defined Systems (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS.2017.7939134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cultural diversity of large crowds is one of the major concerns when participants overstep the predefined guidelines. Such behaviors eradicate crowds' safety, resulting massive casualties. Advent of tracking devices and smartphones with multiple sensing abilities can leverage to capture crowds' real-time spatio-temporal (ST) data to serve emergency service plans. In this paper, we present a Spatio-Temporal Service Model (STSM) that can detect and predict anomalies with in a very large crowd. The model correlates crowd's real-time information with past user's ST-Data and their traffic mobility, and alerts all stockholders and recommends optimized path to shelter points and safe exits for any possible disaster. As a case study, tracking devices were deployed to capture spatio-temporal information of about 2970 vehicles used for pilgrims' mobility during Hajj 2016 event. The data analysis is summarized and basis the functionalities of the model for future pilgrimage.
STSM-一种检测和预测大型人群异常的模型,用于优化路径推荐
当参与者超越预定的指导方针时,大型人群的文化多样性是主要问题之一。这种行为破坏了人群的安全,造成了大量的人员伤亡。跟踪设备和具有多种传感功能的智能手机的出现可以利用捕捉人群的实时时空(ST)数据来为应急服务计划服务。在本文中,我们提出了一种时空服务模型(STSM),它可以在非常大的人群中检测和预测异常。该模型将人群的实时信息与过去用户的st数据及其交通流动性相关联,并提醒所有股东,并为任何可能发生的灾难推荐最佳路径到避难所和安全出口。作为案例研究,在2016年朝觐活动期间,部署了跟踪设备来捕获约2970辆用于朝圣者流动的车辆的时空信息。对数据分析进行了总结,并为未来朝圣模型的功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信