Speech Enhancement in Noisy Environments for Video Retrieval

Huiyu Zhou, A. Sadka, Richard M. Jiang
{"title":"Speech Enhancement in Noisy Environments for Video Retrieval","authors":"Huiyu Zhou, A. Sadka, Richard M. Jiang","doi":"10.1109/WIAMIS.2008.38","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel spectral subtraction approach for speech enhancement via maximum likelihood estimate (MLE). This scheme attempts to simulate the probability distribution of useful speech signals and hence maximally reduce the noise. To evaluate the quality of speech enhancement, we extract cepstral features from the enhanced signals, and then apply them to a dynamic time warping framework for similarity check between the clean and filtered signals. The performance of the proposed enhancement method is compared to that of other classical techniques. The entire framework does not assume any model for the background noise and does not require any noise training data.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a novel spectral subtraction approach for speech enhancement via maximum likelihood estimate (MLE). This scheme attempts to simulate the probability distribution of useful speech signals and hence maximally reduce the noise. To evaluate the quality of speech enhancement, we extract cepstral features from the enhanced signals, and then apply them to a dynamic time warping framework for similarity check between the clean and filtered signals. The performance of the proposed enhancement method is compared to that of other classical techniques. The entire framework does not assume any model for the background noise and does not require any noise training data.
噪声环境下的语音增强视频检索
本文提出了一种基于最大似然估计(MLE)的频谱减法语音增强方法。该方案试图模拟有用语音信号的概率分布,从而最大限度地降低噪声。为了评估语音增强的质量,我们从增强信号中提取倒谱特征,然后将其应用于动态时间规整框架中,以检查干净信号和滤波信号之间的相似性。将所提增强方法的性能与其他经典技术进行了比较。整个框架没有对背景噪声假设任何模型,也不需要任何噪声训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信