Gulf Arabic Diacritization: Guidelines, Initial Dataset, and Results

Nouf Alabbasi, Mohamed Al-Badrashiny, Maryam Aldahmani, Ahmed AlDhanhani, Abdullah Saleh Alhashmi, Fawaghy Ahmed Alhashmi, Khalid Al Hashemi, Rama Emad Alkhobbi, Shamma T Al Maazmi, Mohammed Ali Alyafeai, Mariam M Alzaabi, Mohamed Saqer Alzaabi, Fatma Khalid Badri, Kareem Darwish, Ehab Mansour Diab, Muhammad Morsy Elmallah, Amira Ayman Elnashar, Ashraf Elneima, MHD Tameem Kabbani, Nour Rabih, Ahmad Saad, Ammar Mamoun Sousou
{"title":"Gulf Arabic Diacritization: Guidelines, Initial Dataset, and Results","authors":"Nouf Alabbasi, Mohamed Al-Badrashiny, Maryam Aldahmani, Ahmed AlDhanhani, Abdullah Saleh Alhashmi, Fawaghy Ahmed Alhashmi, Khalid Al Hashemi, Rama Emad Alkhobbi, Shamma T Al Maazmi, Mohammed Ali Alyafeai, Mariam M Alzaabi, Mohamed Saqer Alzaabi, Fatma Khalid Badri, Kareem Darwish, Ehab Mansour Diab, Muhammad Morsy Elmallah, Amira Ayman Elnashar, Ashraf Elneima, MHD Tameem Kabbani, Nour Rabih, Ahmad Saad, Ammar Mamoun Sousou","doi":"10.18653/v1/2022.wanlp-1.33","DOIUrl":null,"url":null,"abstract":"Arabic diacritic recovery is important for a variety of downstream tasks such as text-to-speech. In this paper, we introduce a new Gulf Arabic diacritization dataset composed of 19,850 words based on a subset of the Gumar corpus. We provide comprehensive set of guidelines for diacritization to enable the diacritization of more data. We also report on diacritization results based on the new corpus using a Hidden Markov Model and character-based sequence to sequence models.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Arabic diacritic recovery is important for a variety of downstream tasks such as text-to-speech. In this paper, we introduce a new Gulf Arabic diacritization dataset composed of 19,850 words based on a subset of the Gumar corpus. We provide comprehensive set of guidelines for diacritization to enable the diacritization of more data. We also report on diacritization results based on the new corpus using a Hidden Markov Model and character-based sequence to sequence models.
海湾阿拉伯语变音符化:指南,初始数据集和结果
阿拉伯语变音符恢复对于各种下游任务(如文本到语音)都很重要。在本文中,我们介绍了一个新的海湾阿拉伯语变音符数据集,该数据集基于Gumar语料库的一个子集,由19850个单词组成。我们提供了一套全面的变音符化指南,以实现更多数据的变音符化。我们还报告了基于隐马尔可夫模型和基于字符的序列到序列模型的新语料库的变音符化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信