Air Collision Avoidance Method of Civil Aircraft Based on Reinforcement Learning

Jing Ruan, Shiqian Liu, Weizhi Lyu
{"title":"Air Collision Avoidance Method of Civil Aircraft Based on Reinforcement Learning","authors":"Jing Ruan, Shiqian Liu, Weizhi Lyu","doi":"10.1109/ICCSI55536.2022.9970657","DOIUrl":null,"url":null,"abstract":"This paper studies on the high-density airspace route planning problem. A Q-Learning algorithm is proposed by considering the time series of states. Furthermore, a N-round loop algorithm is introduced to improve Q-Learning effectiveness for the large action space. Typical scenario simulations are carried out to illustrate the proposed algorithm performance, including a route collision with multiple aircrafts, no-fly zones and static obstacles. The simulation results validate feasibility and effectiveness of the proposed algorithm.","PeriodicalId":421514,"journal":{"name":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI55536.2022.9970657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies on the high-density airspace route planning problem. A Q-Learning algorithm is proposed by considering the time series of states. Furthermore, a N-round loop algorithm is introduced to improve Q-Learning effectiveness for the large action space. Typical scenario simulations are carried out to illustrate the proposed algorithm performance, including a route collision with multiple aircrafts, no-fly zones and static obstacles. The simulation results validate feasibility and effectiveness of the proposed algorithm.
基于强化学习的民用飞机空中避碰方法
本文研究高密度空域航路规划问题。提出了一种考虑状态时间序列的q -学习算法。此外,为了提高大动作空间下Q-Learning的有效性,引入了n轮循环算法。通过典型场景仿真验证了算法的性能,包括与多架飞机、禁飞区和静态障碍物的航线碰撞。仿真结果验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信