Face anti-spoofing using patch and depth-based CNNs

Yousef Atoum, Yaojie Liu, Amin Jourabloo, Xiaoming Liu
{"title":"Face anti-spoofing using patch and depth-based CNNs","authors":"Yousef Atoum, Yaojie Liu, Amin Jourabloo, Xiaoming Liu","doi":"10.1109/BTAS.2017.8272713","DOIUrl":null,"url":null,"abstract":"The face image is the most accessible biometric modality which is used for highly accurate face recognition systems, while it is vulnerable to many different types of presentation attacks. Face anti-spoofing is a very critical step before feeding the face image to biometric systems. In this paper, we propose a novel two-stream CNN-based approach for face anti-spoofing, by extracting the local features and holistic depth maps from the face images. The local features facilitate CNN to discriminate the spoof patches independent of the spatial face areas. On the other hand, holistic depth map examine whether the input image has a face-like depth. Extensive experiments are conducted on the challenging databases (CASIA-FASD, MSU-USSA, and Replay Attack), with comparison to the state of the art.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 325

Abstract

The face image is the most accessible biometric modality which is used for highly accurate face recognition systems, while it is vulnerable to many different types of presentation attacks. Face anti-spoofing is a very critical step before feeding the face image to biometric systems. In this paper, we propose a novel two-stream CNN-based approach for face anti-spoofing, by extracting the local features and holistic depth maps from the face images. The local features facilitate CNN to discriminate the spoof patches independent of the spatial face areas. On the other hand, holistic depth map examine whether the input image has a face-like depth. Extensive experiments are conducted on the challenging databases (CASIA-FASD, MSU-USSA, and Replay Attack), with comparison to the state of the art.
使用补丁和基于深度的cnn进行人脸防欺骗
人脸图像是用于高精度人脸识别系统的最容易获得的生物识别模式,但它容易受到许多不同类型的表示攻击。人脸防欺骗是将人脸图像输入生物识别系统之前非常关键的一步。在本文中,我们提出了一种新的基于cnn的双流人脸防欺骗方法,通过从人脸图像中提取局部特征和整体深度图。局部特征使CNN能够独立于空间人脸区域区分恶搞斑块。另一方面,整体深度图检查输入图像是否具有类似人脸的深度。在具有挑战性的数据库(CASIA-FASD, MSU-USSA和Replay Attack)上进行了广泛的实验,并与最新技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信