Self-similar tilings of fractal blow-ups

M. Barnsley, A. Vince
{"title":"Self-similar tilings of fractal\n blow-ups","authors":"M. Barnsley, A. Vince","doi":"10.1090/CONM/731/14672","DOIUrl":null,"url":null,"abstract":"New tilings of certain subsets of $\\mathbb{R}^{M}$ are studied, tilings associated with fractal blow-ups of certain similitude iterated function systems (IFS). For each such IFS with attractor satisfying the open set condition, our construction produces a usually infinite family of tilings that satisfy the following properties: (1) the prototile set is finite; (2) the tilings are repetitive (quasiperiodic); (3) each family contains self-similartilings, usually infinitely many; and (4) when the IFS is rigid in an appropriate sense, the tiling has no non-trivial symmetry; in particular the tiling is non-periodic.","PeriodicalId":431279,"journal":{"name":"Horizons of Fractal Geometry and Complex\n Dimensions","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizons of Fractal Geometry and Complex\n Dimensions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/731/14672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

New tilings of certain subsets of $\mathbb{R}^{M}$ are studied, tilings associated with fractal blow-ups of certain similitude iterated function systems (IFS). For each such IFS with attractor satisfying the open set condition, our construction produces a usually infinite family of tilings that satisfy the following properties: (1) the prototile set is finite; (2) the tilings are repetitive (quasiperiodic); (3) each family contains self-similartilings, usually infinitely many; and (4) when the IFS is rigid in an appropriate sense, the tiling has no non-trivial symmetry; in particular the tiling is non-periodic.
分形爆破的自相似拼接
研究了$\mathbb{R}^{M}$的某些子集的新平铺,这些平铺与某些相似迭代函数系统(IFS)的分形爆破有关。对于每一个这样的具有满足开集条件的吸引子的IFS,我们的构造产生了一个通常是无限的贴片族,这些贴片族满足以下性质:(1)原始集是有限的;(2)平铺是重复的(准周期性);(3)每一科含有自相似子,通常无限多;(4)当IFS在适当的意义上是刚性的时候,其平铺就没有非平凡的对称性;特别是平铺是非周期性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信