Partial Multi-view Subspace Clustering

Nan Xu, Yanqing Guo, Xin Zheng, Qianyu Wang, Xiangyang Luo
{"title":"Partial Multi-view Subspace Clustering","authors":"Nan Xu, Yanqing Guo, Xin Zheng, Qianyu Wang, Xiangyang Luo","doi":"10.1145/3240508.3240679","DOIUrl":null,"url":null,"abstract":"For many real-world multimedia applications, data are often described by multiple views. Therefore, multi-view learning researches are of great significance. Traditional multi-view clustering methods assume that each view has complete data. However, missing data or partial data are more common in real tasks, which results in partial multi-view learning. Therefore, we propose a novel multi-view clustering method, called Partial Multi-view Subspace Clustering (PMSC), to address the partial multi-view problem. Unlike most existing partial multi-view clustering methods that only learn a new representation of the original data, our method seeks the latent space and performs data reconstruction simultaneously to learn the subspace representation. The learned subspace representation can reveal the underlying subspace structure embedded in original data, leading to a more comprehensive data description. In addition, we enforce the subspace representation to be non-negative, yielding an intuitive weight interpretation among different data. The proposed method can be optimized by the Augmented Lagrange Multiplier (ALM) algorithm. Experiments on one synthetic dataset and four benchmark datasets validate the effectiveness of PMSC under the partial multi-view scenario.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

For many real-world multimedia applications, data are often described by multiple views. Therefore, multi-view learning researches are of great significance. Traditional multi-view clustering methods assume that each view has complete data. However, missing data or partial data are more common in real tasks, which results in partial multi-view learning. Therefore, we propose a novel multi-view clustering method, called Partial Multi-view Subspace Clustering (PMSC), to address the partial multi-view problem. Unlike most existing partial multi-view clustering methods that only learn a new representation of the original data, our method seeks the latent space and performs data reconstruction simultaneously to learn the subspace representation. The learned subspace representation can reveal the underlying subspace structure embedded in original data, leading to a more comprehensive data description. In addition, we enforce the subspace representation to be non-negative, yielding an intuitive weight interpretation among different data. The proposed method can be optimized by the Augmented Lagrange Multiplier (ALM) algorithm. Experiments on one synthetic dataset and four benchmark datasets validate the effectiveness of PMSC under the partial multi-view scenario.
部分多视图子空间聚类
对于许多实际的多媒体应用程序,数据通常由多个视图描述。因此,多视角学习研究具有重要意义。传统的多视图聚类方法假设每个视图都有完整的数据。然而,在实际任务中,数据缺失或部分数据更为常见,这导致了部分多视图学习。因此,我们提出了一种新的多视图聚类方法,称为部分多视图子空间聚类(PMSC),以解决部分多视图问题。与大多数现有的部分多视图聚类方法只学习原始数据的新表示不同,我们的方法在寻找潜在空间的同时进行数据重构以学习子空间表示。学习到的子空间表示可以揭示嵌入在原始数据中的底层子空间结构,从而实现更全面的数据描述。此外,我们强制子空间表示是非负的,从而在不同数据之间产生直观的权重解释。该方法可通过增广拉格朗日乘子(ALM)算法进行优化。在一个合成数据集和四个基准数据集上的实验验证了PMSC在部分多视图场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信