A comparative study of statistical ensemble methods on mismatch conditions

D. Luo, Ke Chen
{"title":"A comparative study of statistical ensemble methods on mismatch conditions","authors":"D. Luo, Ke Chen","doi":"10.1109/IJCNN.2002.1005442","DOIUrl":null,"url":null,"abstract":"Unlike previous comparative studies, we present an empirical evaluation on three typical statistical ensemble methods - boosting, bagging and combination of weak perceptrons - in terms of speaker identification where miscellaneous mismatch conditions are involved. During creating an ensemble, moreover, different combination strategies are also investigated. As a result, our studies present their generalization capabilities on mismatch conditions, which provides an alternative insight to understand those methods.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Unlike previous comparative studies, we present an empirical evaluation on three typical statistical ensemble methods - boosting, bagging and combination of weak perceptrons - in terms of speaker identification where miscellaneous mismatch conditions are involved. During creating an ensemble, moreover, different combination strategies are also investigated. As a result, our studies present their generalization capabilities on mismatch conditions, which provides an alternative insight to understand those methods.
不匹配条件下统计集成方法的比较研究
与以往的比较研究不同,我们在涉及杂类不匹配条件的说话人识别方面,对三种典型的统计集成方法-提升,bagging和弱感知器组合进行了实证评估。此外,在创建集成时,还研究了不同的组合策略。因此,我们的研究展示了它们在不匹配条件下的泛化能力,这为理解这些方法提供了另一种见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信