Automated RBC Morphology Counting and Grading Using Image Processing and Support Vector Machine

R. Pellegrino, Aubrey C. Tarrobago, Dave Lester B. Zulueta
{"title":"Automated RBC Morphology Counting and Grading Using Image Processing and Support Vector Machine","authors":"R. Pellegrino, Aubrey C. Tarrobago, Dave Lester B. Zulueta","doi":"10.1109/HNICEM54116.2021.9731937","DOIUrl":null,"url":null,"abstract":"Red Blood Cell (RBC) morphology such as Target Cells and Elliptocytes characterize early pathognomonic determinants in certain diseases like Iron Deficiency Anemia and Thalassemia. Significant amounts of target cells or elliptocytes in a blood sample can be used to grade the existence of Blood Related Disease. In the Philippines, 37.6% of Filipinos have Iron Deficiency Anemia (IDA) and 27.8% suffer from Thalassemia. This study automates the classification, counting, and grading of RBC morphology using image processing techniques and SVM classification. The researchers acquired PBS samples and designed a prototype capable of analyzing these with a Raspberry Pi computer. The device classified, counted, graded and provided associated disease considerations of the sample PBS test. Comparison of the machine and hematologist’s reading of the normal red blood cells, target cells and elliptocytes samples gave an average accuracy of 95.77%.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9731937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Red Blood Cell (RBC) morphology such as Target Cells and Elliptocytes characterize early pathognomonic determinants in certain diseases like Iron Deficiency Anemia and Thalassemia. Significant amounts of target cells or elliptocytes in a blood sample can be used to grade the existence of Blood Related Disease. In the Philippines, 37.6% of Filipinos have Iron Deficiency Anemia (IDA) and 27.8% suffer from Thalassemia. This study automates the classification, counting, and grading of RBC morphology using image processing techniques and SVM classification. The researchers acquired PBS samples and designed a prototype capable of analyzing these with a Raspberry Pi computer. The device classified, counted, graded and provided associated disease considerations of the sample PBS test. Comparison of the machine and hematologist’s reading of the normal red blood cells, target cells and elliptocytes samples gave an average accuracy of 95.77%.
使用图像处理和支持向量机的自动红细胞形态学计数和分级
红细胞(RBC)形态,如靶细胞和椭圆细胞,是某些疾病(如缺铁性贫血和地中海贫血)早期病理决定因素的特征。血液样本中大量的靶细胞或椭圆细胞可用于分级血液相关疾病的存在。在菲律宾,37.6%的菲律宾人患有缺铁性贫血(IDA), 27.8%患有地中海贫血。本研究使用图像处理技术和支持向量机分类对红细胞形态学进行自动分类、计数和分级。研究人员获得了PBS样本,并设计了一个能够用树莓派计算机分析这些样本的原型。该装置对样品PBS试验进行分类、计数、分级并提供相关疾病考虑。将机器与血液学家正常红细胞、靶细胞和椭圆细胞样本的读数进行比较,平均准确率为95.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信