{"title":"Efficient type-ahead search on relational data: a TASTIER approach","authors":"Guoliang Li, S. Ji, Chen Li, Jianhua Feng","doi":"10.1145/1559845.1559918","DOIUrl":null,"url":null,"abstract":"Existing keyword-search systems in relational databases require users to submit a complete query to compute answers. Often users feel \"left in the dark\" when they have limited knowledge about the data, and have to use a try-and-see approach for modifying queries and finding answers. In this paper we propose a novel approach to keyword search in the relational world, called Tastier. A Tastier system can bring instant gratification to users by supporting type-ahead search, which finds answers \"on the fly\" as the user types in query keywords. A main challenge is how to achieve a high interactive speed for large amounts of data in multiple tables, so that a query can be answered efficiently within milliseconds. We propose efficient index structures and algorithms for finding relevant answers on-the-fly by joining tuples in the database. We devise a partition-based method to improve query performance by grouping highly relevant tuples and pruning irrelevant tuples efficiently. We also develop a technique to answer a query efficiently by predicting the highly relevant complete queries for the user. We have conducted a thorough experimental evaluation of the proposed techniques on real data sets to demonstrate the efficiency and practicality of this new search paradigm.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123
Abstract
Existing keyword-search systems in relational databases require users to submit a complete query to compute answers. Often users feel "left in the dark" when they have limited knowledge about the data, and have to use a try-and-see approach for modifying queries and finding answers. In this paper we propose a novel approach to keyword search in the relational world, called Tastier. A Tastier system can bring instant gratification to users by supporting type-ahead search, which finds answers "on the fly" as the user types in query keywords. A main challenge is how to achieve a high interactive speed for large amounts of data in multiple tables, so that a query can be answered efficiently within milliseconds. We propose efficient index structures and algorithms for finding relevant answers on-the-fly by joining tuples in the database. We devise a partition-based method to improve query performance by grouping highly relevant tuples and pruning irrelevant tuples efficiently. We also develop a technique to answer a query efficiently by predicting the highly relevant complete queries for the user. We have conducted a thorough experimental evaluation of the proposed techniques on real data sets to demonstrate the efficiency and practicality of this new search paradigm.