Symbolic Model Checking for Propositional Projection Temporal Logic

Tao Pang, Zhenhua Duan, Cong Tian
{"title":"Symbolic Model Checking for Propositional Projection Temporal Logic","authors":"Tao Pang, Zhenhua Duan, Cong Tian","doi":"10.1109/TASE.2012.35","DOIUrl":null,"url":null,"abstract":"This paper presents a symbolic model checking algorithm for Propositional Projection Temporal Logic (PPTL). Within this method, the model of a system is specified by a Kripke structure M, and the desired property is specified in a PPTL formula P. First, M is symbolically represented with boolean functions while -P is transformed into its normal form. Then the set of states in M that satisfies -P, namely Sat(-P), is computed recursively with respect to the transition relations. Thus, whether the system satisfies the property can be equivalently checked by determining the emptiness of Sat(-P). All the operations above can be implemented by a graph algorithm operated on ROBDDs.","PeriodicalId":417979,"journal":{"name":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a symbolic model checking algorithm for Propositional Projection Temporal Logic (PPTL). Within this method, the model of a system is specified by a Kripke structure M, and the desired property is specified in a PPTL formula P. First, M is symbolically represented with boolean functions while -P is transformed into its normal form. Then the set of states in M that satisfies -P, namely Sat(-P), is computed recursively with respect to the transition relations. Thus, whether the system satisfies the property can be equivalently checked by determining the emptiness of Sat(-P). All the operations above can be implemented by a graph algorithm operated on ROBDDs.
命题投射时间逻辑的符号模型检验
提出了一种命题投影时间逻辑(PPTL)的符号模型检验算法。在该方法中,系统的模型由Kripke结构M来指定,所需的性质用PPTL公式p来指定。首先,M用布尔函数符号表示,而-P则转换为其正规形式。然后根据转换关系递归计算M中满足-P的状态集,即Sat(-P)。因此,可以通过确定Sat(-P)的空性来等价地检查系统是否满足该性质。上述所有操作都可以通过在robdd上运行的图算法来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信