Research on Music Emotion Classification Based on CNN-LSTM Network

Yin Yu
{"title":"Research on Music Emotion Classification Based on CNN-LSTM Network","authors":"Yin Yu","doi":"10.1109/acait53529.2021.9731277","DOIUrl":null,"url":null,"abstract":"Music art contains rich emotional information. The research on the classification of music emotion is of great significance for massive music organization and retrieval. In view of this, this study extracts the feature parameters in music information based on support vector machine (SVM), convolutional neural network (CNN) and cyclic neural network (RNN). While analyzing the impact of different feature parameters on music emotion classification, this paper constructs a CNN-LSTM combined network classification model. The results show that compared with the traditional classification algorithms, the combined model constructed in this study has higher classification accuracy and can improve the performance of music emotion classification thoroughly.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Music art contains rich emotional information. The research on the classification of music emotion is of great significance for massive music organization and retrieval. In view of this, this study extracts the feature parameters in music information based on support vector machine (SVM), convolutional neural network (CNN) and cyclic neural network (RNN). While analyzing the impact of different feature parameters on music emotion classification, this paper constructs a CNN-LSTM combined network classification model. The results show that compared with the traditional classification algorithms, the combined model constructed in this study has higher classification accuracy and can improve the performance of music emotion classification thoroughly.
基于CNN-LSTM网络的音乐情感分类研究
音乐艺术蕴含着丰富的情感信息。音乐情感分类的研究对于海量的音乐组织和检索具有重要意义。鉴于此,本研究基于支持向量机(SVM)、卷积神经网络(CNN)和循环神经网络(RNN)提取音乐信息中的特征参数。在分析不同特征参数对音乐情感分类影响的同时,构建了CNN-LSTM组合网络分类模型。结果表明,与传统的分类算法相比,本研究构建的组合模型具有更高的分类精度,可以彻底提高音乐情感分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信