Navigation information fusion for an AUV in rivers

Jinjun Rao, Jinbo Chen, Wei Ding, Zhenbang Gong
{"title":"Navigation information fusion for an AUV in rivers","authors":"Jinjun Rao, Jinbo Chen, Wei Ding, Zhenbang Gong","doi":"10.1109/MFI.2012.6343038","DOIUrl":null,"url":null,"abstract":"Autonomous Underwater Vehicles (AUVs) present an enormous application potential, and the real time accurate position and attitude information is important for AUVs. In order to obtain comprehensive and accurate position and attitude data of AUVs, focusing on the common low cost sensors configuration, the data fusion problem of SINS/USBL/AHRS combination is presented and studied in this paper. Firstly, the error expressions of MEMS are researched and derived, and the data fusion model for Kalman Filter fusion algorithms is presented. The method is validated using a data set gathered for a Huangpu river inspection task. The comparison between original data and fusional data shows that SINS/USBL/AHRS data fusion system can promote accuracy of position and attitude markedly.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomous Underwater Vehicles (AUVs) present an enormous application potential, and the real time accurate position and attitude information is important for AUVs. In order to obtain comprehensive and accurate position and attitude data of AUVs, focusing on the common low cost sensors configuration, the data fusion problem of SINS/USBL/AHRS combination is presented and studied in this paper. Firstly, the error expressions of MEMS are researched and derived, and the data fusion model for Kalman Filter fusion algorithms is presented. The method is validated using a data set gathered for a Huangpu river inspection task. The comparison between original data and fusional data shows that SINS/USBL/AHRS data fusion system can promote accuracy of position and attitude markedly.
河流水下航行器导航信息融合
自主水下航行器(auv)具有巨大的应用潜力,实时准确的位置和姿态信息对auv至关重要。为了获得全面准确的水下机器人位置姿态数据,本文针对常见的低成本传感器配置,提出并研究了SINS/USBL/AHRS组合的数据融合问题。首先,研究并推导了MEMS的误差表达式,给出了卡尔曼滤波融合算法的数据融合模型。利用黄浦江水质监测任务的数据集对该方法进行了验证。原始数据与融合数据的对比表明,SINS/USBL/AHRS数据融合系统能够显著提高定位和姿态精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信