Boundary connectedness based video cut for moving object segmentation

Hiba Ramadan, H. Tairi
{"title":"Boundary connectedness based video cut for moving object segmentation","authors":"Hiba Ramadan, H. Tairi","doi":"10.1109/ATSIP.2017.8075596","DOIUrl":null,"url":null,"abstract":"A new algorithm for automatic segmentation of moving objects in video based on spatio-temporal saliency and Neutro-Connectedness is presented in this paper. First, we propose a simple model to compute video saliency by combining initial saliency maps computed in spatial and temporal domains. Then, based on the detected spatiotemporal saliency map and temporal superpixels, initial background and foreground regions can be detected and taken as input of our proposed boundary connectedness based video cut (BC-video cut) to achieve moving object segmentation. Our model predicts jointly appearance models, Neutro-Connectedness, and pixel labels via an iterative energy minimization framework. Experiments show a good performance of our algorithm to segment moving objects on benchmark datasets.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new algorithm for automatic segmentation of moving objects in video based on spatio-temporal saliency and Neutro-Connectedness is presented in this paper. First, we propose a simple model to compute video saliency by combining initial saliency maps computed in spatial and temporal domains. Then, based on the detected spatiotemporal saliency map and temporal superpixels, initial background and foreground regions can be detected and taken as input of our proposed boundary connectedness based video cut (BC-video cut) to achieve moving object segmentation. Our model predicts jointly appearance models, Neutro-Connectedness, and pixel labels via an iterative energy minimization framework. Experiments show a good performance of our algorithm to segment moving objects on benchmark datasets.
基于边界连通性的视频切割运动目标分割
提出了一种基于时空显著性和中性连通性的视频运动目标自动分割算法。首先,我们提出了一个简单的模型,通过结合在空间和时间域中计算的初始显著性地图来计算视频显著性。然后,基于检测到的时空显著性图和时间超像素,可以检测到初始背景和前景区域,并将其作为基于边界连通性的视频切割(BC-video cut)的输入,实现运动目标分割。我们的模型通过迭代能量最小化框架联合预测外观模型、中性连通性和像素标签。实验表明,该算法在基准数据集上具有良好的运动目标分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信