Impulse noise removal: Noise detection versus pixel estimation

Dung Dang, W. Luo
{"title":"Impulse noise removal: Noise detection versus pixel estimation","authors":"Dung Dang, W. Luo","doi":"10.1109/TPSD.2006.5507445","DOIUrl":null,"url":null,"abstract":"This paper proposes a new finding regarding the different roles and significance of noise detection and pixel estimation utilized in the majority of impulse noise removing algorithms. Extensive experimental results will be presented to show that the importance of each method depends on the noise ratio. In other words, by particularly examining how the adaptive median filter (AMF) algorithm [18] employs the two aforementioned methods in comparison with their modified versions as well as the ideal-filtering algorithm, this paper will point out the role that each method plays. The significance of noise detection can be realized at low noise ratio while pixel estimation gains its efficiency as noise ratio increases.","PeriodicalId":385396,"journal":{"name":"2006 IEEE Region 5 Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Region 5 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPSD.2006.5507445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new finding regarding the different roles and significance of noise detection and pixel estimation utilized in the majority of impulse noise removing algorithms. Extensive experimental results will be presented to show that the importance of each method depends on the noise ratio. In other words, by particularly examining how the adaptive median filter (AMF) algorithm [18] employs the two aforementioned methods in comparison with their modified versions as well as the ideal-filtering algorithm, this paper will point out the role that each method plays. The significance of noise detection can be realized at low noise ratio while pixel estimation gains its efficiency as noise ratio increases.
脉冲噪声去除:噪声检测与像素估计
本文提出了一个新的发现,即噪声检测和像素估计在大多数脉冲噪声去除算法中的不同作用和意义。大量的实验结果将表明,每种方法的重要性取决于噪声比。换句话说,本文将通过特别研究自适应中值滤波(AMF)算法[18]如何使用上述两种方法,并与它们的修改版本以及理想滤波算法进行比较,来指出每种方法所起的作用。噪声检测的意义在低噪声比下才能实现,而像素估计的效率随着噪声比的增大而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信