3D cardiac motion tracking using Robust Point Matching and meshless deformable models

Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, L. Axel
{"title":"3D cardiac motion tracking using Robust Point Matching and meshless deformable models","authors":"Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, L. Axel","doi":"10.1109/ISBI.2008.4540987","DOIUrl":null,"url":null,"abstract":"We propose a novel 3D motion estimation approach integrating the robust point matching (RPM) and meshless deformable models. In our study, we first use the Gabor filters to generate phase maps of short axis (SA) and long axis (LA) tagged MRI sequences. Then we use the RPM to track the heart motion sparsely at intersections of tag grids in these image sequences, using both intensity gradient and phase information. Next, the new meshless deformable model is used to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. The deformable model is driven by external forces computed at tag intersections based on the RPM motion tracking and keeps a consistent but flexible topology during the deformation using internal constraint forces calculated by the moving least squares (MLS) method. The deformable model recovers the global deformation of the LV such as rotation, contraction and twisting by integrating global deformation parameters over the volume. The new model avoids the singularity problem of mesh-based deformable models and is capable of tracking deformation efficiently with the sparse external forces derived from tagging line intersections. We test the performance of the new approach on in vivo heart data of healthy subjects and patients. The experimental results show that our new method can fully recover the myocardium motion and strain in 3D.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a novel 3D motion estimation approach integrating the robust point matching (RPM) and meshless deformable models. In our study, we first use the Gabor filters to generate phase maps of short axis (SA) and long axis (LA) tagged MRI sequences. Then we use the RPM to track the heart motion sparsely at intersections of tag grids in these image sequences, using both intensity gradient and phase information. Next, the new meshless deformable model is used to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. The deformable model is driven by external forces computed at tag intersections based on the RPM motion tracking and keeps a consistent but flexible topology during the deformation using internal constraint forces calculated by the moving least squares (MLS) method. The deformable model recovers the global deformation of the LV such as rotation, contraction and twisting by integrating global deformation parameters over the volume. The new model avoids the singularity problem of mesh-based deformable models and is capable of tracking deformation efficiently with the sparse external forces derived from tagging line intersections. We test the performance of the new approach on in vivo heart data of healthy subjects and patients. The experimental results show that our new method can fully recover the myocardium motion and strain in 3D.
使用鲁棒点匹配和无网格变形模型的3D心脏运动跟踪
提出了一种结合鲁棒点匹配和无网格变形模型的三维运动估计方法。在我们的研究中,我们首先使用Gabor滤波器来生成短轴(SA)和长轴(LA)标记的MRI序列的相位图。然后,我们使用RPM在这些图像序列中标记网格的交叉点稀疏跟踪心脏运动,同时使用强度梯度和相位信息。然后,利用新的无网格可变形模型暂时恢复心肌在心动周期中密集的三维运动。该变形模型基于RPM运动跟踪,由标签交点处计算的外力驱动,并利用运动最小二乘(MLS)方法计算的内力在变形过程中保持一致的柔性拓扑。可变形模型通过对体积上的全局变形参数进行积分,恢复LV的旋转、收缩、扭转等全局变形。该模型避免了基于网格的变形模型的奇异性问题,能够利用标记线相交产生的稀疏外力有效地跟踪变形。我们在健康受试者和患者的体内心脏数据上测试了新方法的性能。实验结果表明,该方法可以完全恢复心肌运动和应变的三维图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信