Multi-scale Local Implicit Keypoint Descriptor for Keypoint Matching

Jongmin Lee, Eunhyeok Park, S. Yoo
{"title":"Multi-scale Local Implicit Keypoint Descriptor for Keypoint Matching","authors":"Jongmin Lee, Eunhyeok Park, S. Yoo","doi":"10.1109/CVPRW59228.2023.00654","DOIUrl":null,"url":null,"abstract":"We investigate the potential of multi-scale descriptors which has been under-explored in the existing literature. At the pixel level, we propose utilizing both coarse and fine-grained descriptors and present a scale-aware method of negative sampling, which trains descriptors at different scales in a complementary manner, thereby improving their discriminative power. For sub-pixel level descriptors, we also propose adopting coordinate-based implicit modeling and learning the non-linearity of local descriptors on continuous-domain coordinates. Our experiments show that the proposed method achieves state-of-the-art performance on various tasks, i.e., image matching, relative pose estimation, and visual localization.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the potential of multi-scale descriptors which has been under-explored in the existing literature. At the pixel level, we propose utilizing both coarse and fine-grained descriptors and present a scale-aware method of negative sampling, which trains descriptors at different scales in a complementary manner, thereby improving their discriminative power. For sub-pixel level descriptors, we also propose adopting coordinate-based implicit modeling and learning the non-linearity of local descriptors on continuous-domain coordinates. Our experiments show that the proposed method achieves state-of-the-art performance on various tasks, i.e., image matching, relative pose estimation, and visual localization.
用于关键点匹配的多尺度局部隐式关键点描述符
我们研究了现有文献中尚未充分开发的多尺度描述符的潜力。在像素级,我们提出同时使用粗粒度和细粒度描述符,并提出了一种尺度感知的负采样方法,该方法以互补的方式在不同尺度上训练描述符,从而提高它们的判别能力。对于亚像素级描述符,我们还提出了基于坐标的隐式建模和学习局部描述符在连续域坐标上的非线性。我们的实验表明,该方法在图像匹配、相对姿态估计和视觉定位等各种任务上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信