{"title":"Multi-scale Local Implicit Keypoint Descriptor for Keypoint Matching","authors":"Jongmin Lee, Eunhyeok Park, S. Yoo","doi":"10.1109/CVPRW59228.2023.00654","DOIUrl":null,"url":null,"abstract":"We investigate the potential of multi-scale descriptors which has been under-explored in the existing literature. At the pixel level, we propose utilizing both coarse and fine-grained descriptors and present a scale-aware method of negative sampling, which trains descriptors at different scales in a complementary manner, thereby improving their discriminative power. For sub-pixel level descriptors, we also propose adopting coordinate-based implicit modeling and learning the non-linearity of local descriptors on continuous-domain coordinates. Our experiments show that the proposed method achieves state-of-the-art performance on various tasks, i.e., image matching, relative pose estimation, and visual localization.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the potential of multi-scale descriptors which has been under-explored in the existing literature. At the pixel level, we propose utilizing both coarse and fine-grained descriptors and present a scale-aware method of negative sampling, which trains descriptors at different scales in a complementary manner, thereby improving their discriminative power. For sub-pixel level descriptors, we also propose adopting coordinate-based implicit modeling and learning the non-linearity of local descriptors on continuous-domain coordinates. Our experiments show that the proposed method achieves state-of-the-art performance on various tasks, i.e., image matching, relative pose estimation, and visual localization.