{"title":"Meromorphic Painlevé III transcendents and the Joukowski correspondence","authors":"Andrea E. V. Ferrari, L. Mason","doi":"10.1093/INTEGR/XYZ001","DOIUrl":null,"url":null,"abstract":"We study a twistor correspondence based on the Joukowski map reduced from one for stationary-axisymmetric self-dual Yang-Mills and adapt it to the Painleve III equation. A natural condition on the geometry (axissimplicity) leads to solutions that are meromorphic at the fixed singularity at the origin. We show that it also implies a quantisation condition for the parameter in the equation. From the point of view of generalized monodromy data, the condition is equivalent to triviality of the Stokes matrices and half-integral exponents of formal monodromy. We obtain canonically defined representations in terms of a Birkhoff factorization whose entries are related to the data at the origin and the Painleve constants.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study a twistor correspondence based on the Joukowski map reduced from one for stationary-axisymmetric self-dual Yang-Mills and adapt it to the Painleve III equation. A natural condition on the geometry (axissimplicity) leads to solutions that are meromorphic at the fixed singularity at the origin. We show that it also implies a quantisation condition for the parameter in the equation. From the point of view of generalized monodromy data, the condition is equivalent to triviality of the Stokes matrices and half-integral exponents of formal monodromy. We obtain canonically defined representations in terms of a Birkhoff factorization whose entries are related to the data at the origin and the Painleve constants.