Meromorphic Painlevé III transcendents and the Joukowski correspondence

Andrea E. V. Ferrari, L. Mason
{"title":"Meromorphic Painlevé III transcendents and the Joukowski correspondence","authors":"Andrea E. V. Ferrari, L. Mason","doi":"10.1093/INTEGR/XYZ001","DOIUrl":null,"url":null,"abstract":"We study a twistor correspondence based on the Joukowski map reduced from one for stationary-axisymmetric self-dual Yang-Mills and adapt it to the Painleve III equation. A natural condition on the geometry (axissimplicity) leads to solutions that are meromorphic at the fixed singularity at the origin. We show that it also implies a quantisation condition for the parameter in the equation. From the point of view of generalized monodromy data, the condition is equivalent to triviality of the Stokes matrices and half-integral exponents of formal monodromy. We obtain canonically defined representations in terms of a Birkhoff factorization whose entries are related to the data at the origin and the Painleve constants.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study a twistor correspondence based on the Joukowski map reduced from one for stationary-axisymmetric self-dual Yang-Mills and adapt it to the Painleve III equation. A natural condition on the geometry (axissimplicity) leads to solutions that are meromorphic at the fixed singularity at the origin. We show that it also implies a quantisation condition for the parameter in the equation. From the point of view of generalized monodromy data, the condition is equivalent to triviality of the Stokes matrices and half-integral exponents of formal monodromy. We obtain canonically defined representations in terms of a Birkhoff factorization whose entries are related to the data at the origin and the Painleve constants.
亚纯painlevevl3超验与Joukowski对应
我们研究了一个基于静止轴对称自对偶Yang-Mills的Joukowski映射的扭转对应,并将其应用于Painleve III方程。几何上的一个自然条件(轴素性)导致解在原点的固定奇点处是亚纯的。我们证明了它还暗示了方程中参数的量化条件。从广义单数据的角度来看,该条件等价于Stokes矩阵的平凡性和形式单的半积分指数。我们根据Birkhoff分解获得了标准定义的表示,其条目与原点数据和painlevel常数相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信