Automatic aspect discrimination in relational data clustering

Danilo Horta, R. Campello
{"title":"Automatic aspect discrimination in relational data clustering","authors":"Danilo Horta, R. Campello","doi":"10.1109/ISDA.2011.6121709","DOIUrl":null,"url":null,"abstract":"The features describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that performs fuzzy clustering and aspects weighting simultaneously was recently proposed. However, there are several situations where the data set is represented by proximity matrices only (relational data), which renders several clustering approaches, including SCAD, inappropriate. To handle this kind of data, the relational clustering algorithm CARD, based on the SCAD algorithm, has been recently developed. However, CARD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to also reduce the number of parameters required. The improved CARD is assessed over hundreds of real and artificial data sets.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The features describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that performs fuzzy clustering and aspects weighting simultaneously was recently proposed. However, there are several situations where the data set is represented by proximity matrices only (relational data), which renders several clustering approaches, including SCAD, inappropriate. To handle this kind of data, the relational clustering algorithm CARD, based on the SCAD algorithm, has been recently developed. However, CARD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to also reduce the number of parameters required. The improved CARD is assessed over hundreds of real and artificial data sets.
关系数据聚类中的自动方面识别
描述数据集的特征通常可以安排在有意义的子集中,每个子集对应于数据的不同方面。提出了一种同时进行模糊聚类和方面加权的无监督算法(SCAD)。然而,在一些情况下,数据集仅由邻近矩阵表示(关系数据),这使得包括SCAD在内的几种聚类方法不合适。为了处理这类数据,最近在SCAD算法的基础上发展了关系聚类算法CARD。然而,在某些条件下,CARD可能会失败并停止。为了解决这个问题,需要修改其步骤,然后重新排序,以减少所需参数的数量。改进后的CARD在数百个真实和人工数据集上进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信