Chirplet-based target recognition using RADAR technology

M. Alaee, H. Amindavar
{"title":"Chirplet-based target recognition using RADAR technology","authors":"M. Alaee, H. Amindavar","doi":"10.1109/SAM.2008.4606910","DOIUrl":null,"url":null,"abstract":"In this paper, q-chirplet based signal processing is applied to data from a low-resolution ground surveillance pulse Doppler RADAR, to classify three classes of targets: personnel, wheeled vehicles and animals. We utilize Zernike moments (ZM) over the chirplet parameters to determine the pertinent features. Our work provides a new approach for multiresolution analysis and classification of non-stationary signals with the objective of revealing important features in an unknown noise and clutter environment. The algorithm is trained and tested on real RADAR signatures of multiple examples of moving targets from each class. The results show the proposed algorithm invariancy against speed and orientation of the targets.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, q-chirplet based signal processing is applied to data from a low-resolution ground surveillance pulse Doppler RADAR, to classify three classes of targets: personnel, wheeled vehicles and animals. We utilize Zernike moments (ZM) over the chirplet parameters to determine the pertinent features. Our work provides a new approach for multiresolution analysis and classification of non-stationary signals with the objective of revealing important features in an unknown noise and clutter environment. The algorithm is trained and tested on real RADAR signatures of multiple examples of moving targets from each class. The results show the proposed algorithm invariancy against speed and orientation of the targets.
基于chirplet的雷达目标识别技术
本文将基于q-chirplet的信号处理应用于低分辨率脉冲多普勒地面监视雷达数据,对人员、轮式车辆和动物三类目标进行分类。我们利用小波参数上的泽尼克矩(ZM)来确定相关特征。我们的工作为非平稳信号的多分辨率分析和分类提供了一种新的方法,目的是揭示未知噪声和杂波环境中的重要特征。算法在每个类别的多个运动目标的真实雷达特征上进行了训练和测试。结果表明,该算法对目标的速度和方向具有不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信