Self-structuring fuzzy systems for function approximation

V. Gorrini, T. Salome, H. Bersini
{"title":"Self-structuring fuzzy systems for function approximation","authors":"V. Gorrini, T. Salome, H. Bersini","doi":"10.1109/FUZZY.1995.409792","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm developed in a biological spirit and dedicated to the incremental building of fuzzy systems for function approximation. It is called EFUSS (evolving fuzzy systems structure) and aims at automatically and incrementally finding the minimal number of membership functions along with their appropriate shaping. The main mechanisms constituting our algorithm are to: observe the oscillatory tendency of the parameters defining the output part of the fuzzy rules, then detect the most oscillatory one, and finally supply the zone covered by the input of this strongly oscillating rule with a complementary fuzzy rule.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents an algorithm developed in a biological spirit and dedicated to the incremental building of fuzzy systems for function approximation. It is called EFUSS (evolving fuzzy systems structure) and aims at automatically and incrementally finding the minimal number of membership functions along with their appropriate shaping. The main mechanisms constituting our algorithm are to: observe the oscillatory tendency of the parameters defining the output part of the fuzzy rules, then detect the most oscillatory one, and finally supply the zone covered by the input of this strongly oscillating rule with a complementary fuzzy rule.<>
函数逼近的自结构模糊系统
本文提出了一种基于生物学精神的算法,用于函数逼近的模糊系统的增量构建。它被称为EFUSS(进化模糊系统结构),旨在自动和增量地找到最小数量的隶属函数并对其进行适当的整形。该算法的主要机制是:观察定义模糊规则输出部分的参数的振荡趋势,然后检测出振荡最大的参数,最后用互补模糊规则为该强振荡规则的输入所覆盖的区域提供补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信