Crowd density estimation from a surveillance camera

V. Pham
{"title":"Crowd density estimation from a surveillance camera","authors":"V. Pham","doi":"10.1049/pbtr017e_ch10","DOIUrl":null,"url":null,"abstract":"This chapter presents an approach for crowd density estimation in public scenes from a surveillance camera. We formulate the problem of estimating density in a structured learning framework applied to random decision forests. Our approach learns the mapping between image patch features and relative locations of all the objects inside each patch, which contribute for generating the patch density map through Gaussian kernel density estimation. We build the forest in a coarse-to-fine manner with two split node layers and further propose a crowdedness prior and an effective forest reduction method to improve the estimation accuracy and speed. Moreover, we introduce a semiautomatic training method to learn the estimator for a specific scene. We achieved state-of-the-art results on the public Mall and UCSD datasets and also proposed two potential applications in traffic counts and scene understanding with promising results.","PeriodicalId":217624,"journal":{"name":"Smart Sensing for Traffic Monitoring","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Sensing for Traffic Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbtr017e_ch10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter presents an approach for crowd density estimation in public scenes from a surveillance camera. We formulate the problem of estimating density in a structured learning framework applied to random decision forests. Our approach learns the mapping between image patch features and relative locations of all the objects inside each patch, which contribute for generating the patch density map through Gaussian kernel density estimation. We build the forest in a coarse-to-fine manner with two split node layers and further propose a crowdedness prior and an effective forest reduction method to improve the estimation accuracy and speed. Moreover, we introduce a semiautomatic training method to learn the estimator for a specific scene. We achieved state-of-the-art results on the public Mall and UCSD datasets and also proposed two potential applications in traffic counts and scene understanding with promising results.
通过监控摄像头估计人群密度
本章提出了一种基于监控摄像机的公共场景人群密度估计方法。我们提出了一个应用于随机决策森林的结构化学习框架中的密度估计问题。我们的方法学习图像patch特征与每个patch内所有物体的相对位置之间的映射,这有助于通过高斯核密度估计生成patch密度图。我们采用两层节点分离的粗到细方式构建森林,并进一步提出了拥挤先验和有效的森林约简方法,以提高估计的精度和速度。此外,我们还引入了一种半自动训练方法来学习特定场景的估计量。我们在公共购物中心和加州大学圣地亚哥分校的数据集上取得了最先进的结果,并提出了在交通计数和场景理解方面的两个潜在应用,并取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信