Fair Maximal Independent Sets

Jeremy T. Fineman, Calvin C. Newport, M. Sherr, Tonghe Wang
{"title":"Fair Maximal Independent Sets","authors":"Jeremy T. Fineman, Calvin C. Newport, M. Sherr, Tonghe Wang","doi":"10.1109/IPDPS.2014.79","DOIUrl":null,"url":null,"abstract":"Finding a maximal independent set (MIS) is a classic problem in graph theory that has been widely studied in the context of distributed algorithms. Standard distributed solutions to the MIS problem focus on time complexity. In this paper, we also consider fairness. For a given MIS algorithm A and graph G, we define the inequality factor for A on G to be the largest ratio between the probabilities of the nodes joining an MIS in the graph. We say an algorithm is fair with respect to a family of graphs if it achieves a constant inequality factor for all graphs in the family. In this paper, we seek efficient and fair algorithms for common graph families. We begin by describing an algorithm that is fair and runs in O(log* n)-time in rooted trees of size n. Moving to unrooted trees, we describe a fair algorithm that runs in O(log n) time. Generalizing further to bipartite graphs, we describe a third fair algorithm that requires O(log2 n) rounds. We also show a fair algorithm for planar graphs that runs in O(log2 n) rounds, and describe an algorithm that can be run in any graph, yielding good bounds on inequality in regions that can be efficiently colored with a small number of colors. We conclude our theoretical analysis with a lower bound that identifies a graph where all MIS algorithms achieve an inequality bound in Ω(n)-eliminating the possibility of an MIS algorithm that is fair in all graphs. Finally, to motivate the need for provable fairness guarantees, we simulate both our tree algorithm and Luby's MIS algorithm [13] in a variety of different tree topologies-some synthetic and some derived from real world data. Whereas our algorithm always yield an inequality factor ≤3.25 in these simulations, Luby's algorithms yields factors as large as 168.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Finding a maximal independent set (MIS) is a classic problem in graph theory that has been widely studied in the context of distributed algorithms. Standard distributed solutions to the MIS problem focus on time complexity. In this paper, we also consider fairness. For a given MIS algorithm A and graph G, we define the inequality factor for A on G to be the largest ratio between the probabilities of the nodes joining an MIS in the graph. We say an algorithm is fair with respect to a family of graphs if it achieves a constant inequality factor for all graphs in the family. In this paper, we seek efficient and fair algorithms for common graph families. We begin by describing an algorithm that is fair and runs in O(log* n)-time in rooted trees of size n. Moving to unrooted trees, we describe a fair algorithm that runs in O(log n) time. Generalizing further to bipartite graphs, we describe a third fair algorithm that requires O(log2 n) rounds. We also show a fair algorithm for planar graphs that runs in O(log2 n) rounds, and describe an algorithm that can be run in any graph, yielding good bounds on inequality in regions that can be efficiently colored with a small number of colors. We conclude our theoretical analysis with a lower bound that identifies a graph where all MIS algorithms achieve an inequality bound in Ω(n)-eliminating the possibility of an MIS algorithm that is fair in all graphs. Finally, to motivate the need for provable fairness guarantees, we simulate both our tree algorithm and Luby's MIS algorithm [13] in a variety of different tree topologies-some synthetic and some derived from real world data. Whereas our algorithm always yield an inequality factor ≤3.25 in these simulations, Luby's algorithms yields factors as large as 168.
公平极大独立集
最大独立集(MIS)是图论中的一个经典问题,在分布式算法中得到了广泛的研究。管理信息系统问题的标准分布式解决方案侧重于时间复杂性。在本文中,我们还考虑了公平性。对于给定的MIS算法a和图G,我们将a在G上的不等式因子定义为图中加入MIS的节点的概率之间的最大比值。我们说一个算法对于图族是公平的,如果它对族中的所有图都达到一个常数不等式因子。在本文中,我们寻求对常见图族有效且公平的算法。我们首先描述一个公平的算法,在大小为n的有根树中运行时间为O(log* n)。转到无根树,我们描述一个运行时间为O(log n)的公平算法。进一步推广到二部图,我们描述了第三种公平算法,它需要O(log2 n)轮。我们还展示了一个在O(log2 n)轮内运行的平面图的公平算法,并描述了一个可以在任何图中运行的算法,在可以有效地用少量颜色着色的区域上产生良好的不等式边界。我们用一个下界来总结我们的理论分析,该下界识别了所有MIS算法在Ω(n)中达到不等式界的图-消除了MIS算法在所有图中都是公平的可能性。最后,为了激发对可证明公平性保证的需求,我们在各种不同的树拓扑中模拟了我们的树算法和Luby的MIS算法[13]——一些是合成的,一些是从现实世界的数据中派生出来的。在这些模拟中,我们的算法总是产生一个≤3.25的不等式因子,而Luby的算法产生的因子高达168。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信