Predicting Economic Performance of Bangladesh using Autoregressive Integrated Moving Average (ARIMA) model.

Raad Mozib Lalon, N. Jahan
{"title":"Predicting Economic Performance of Bangladesh using Autoregressive Integrated Moving Average (ARIMA) model.","authors":"Raad Mozib Lalon, N. Jahan","doi":"10.47260/JAFB/1125","DOIUrl":null,"url":null,"abstract":"This paper attempts to forecast the economic performance of Bangladesh measured with annual GDP data using an Autoregressive Integrated Moving Average (ARIMA) Model followed by test of goodness of fit using AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) index value among six ARIMA models along with several diagnostic tests such as plotting ACF (Autocorrelation Function), PACF (Partial Autocorrelation Function) and performing Unit Root Test of the Residuals estimated by the selected forecasting ARIMA model. We have found the appropriate ARIMA (1,0,1) model useful in predicting the GDP growth of Bangladesh for next couple of years adopting Box-Jenkins approach to construct the ARIMA (p,r,q) model using the GDP data of Bangladesh provided in the World Bank Data stream from 1961 to 2019.\n\nJEL classification numbers: B22, B23, C53.\nKeywords: GDP growth, ACF, PACF, Stationary, ARIMA (p,r,q) model, Forecasting.","PeriodicalId":371149,"journal":{"name":"Journal of Applied Finance and Banking","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Finance and Banking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/JAFB/1125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper attempts to forecast the economic performance of Bangladesh measured with annual GDP data using an Autoregressive Integrated Moving Average (ARIMA) Model followed by test of goodness of fit using AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) index value among six ARIMA models along with several diagnostic tests such as plotting ACF (Autocorrelation Function), PACF (Partial Autocorrelation Function) and performing Unit Root Test of the Residuals estimated by the selected forecasting ARIMA model. We have found the appropriate ARIMA (1,0,1) model useful in predicting the GDP growth of Bangladesh for next couple of years adopting Box-Jenkins approach to construct the ARIMA (p,r,q) model using the GDP data of Bangladesh provided in the World Bank Data stream from 1961 to 2019. JEL classification numbers: B22, B23, C53. Keywords: GDP growth, ACF, PACF, Stationary, ARIMA (p,r,q) model, Forecasting.
运用自回归综合移动平均(ARIMA)模型预测孟加拉国经济表现。
本文试图使用自回归综合移动平均(ARIMA)模型预测年度GDP数据衡量的孟加拉国的经济表现,然后使用AIC(赤井信息标准)和BIC(贝叶斯信息标准)在六个ARIMA模型中的指数值进行拟合优度检验,以及一些诊断测试,如绘制ACF(自相关函数),PACF(偏自相关函数)和对所选预测ARIMA模型估计的残差进行单位根检验。我们发现适当的ARIMA(1,0,1)模型有助于预测孟加拉国未来几年的GDP增长,采用Box-Jenkins方法构建ARIMA (p,r,q)模型,使用1961年至2019年世界银行数据流中提供的孟加拉国GDP数据。JEL分类号:B22、B23、C53。关键词:GDP增长,ACF, PACF,平稳性,ARIMA (p,r,q)模型,预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信