A Hybrid Approach to Scalable Name Prefix Lookup

Kun Huang, Zhaohua Wang
{"title":"A Hybrid Approach to Scalable Name Prefix Lookup","authors":"Kun Huang, Zhaohua Wang","doi":"10.1109/IWQoS.2018.8624182","DOIUrl":null,"url":null,"abstract":"Name prefix lookup is a core function in Named Data Networking (NDN). It is challenging to perform high-speed name-based longest prefix match lookups against a large amount of variable-length, hierarchical name prefixes in NDN. However, prior work concentrates on software-based name prefix lookup, and can't satisfy the scalability demands of high-speed lookups, low memory cost, and fast incremental updates. In this paper, we propose a hybrid approach to scalable name prefix lookup with hardware and software. We propose SACS, a shape and content search framework with ternary content addressable memories (TCAMs) and static random memory access memories (SRAMs). SACS aims to achieve high-speed lookups and low memory cost, while sustaining fast incremental updates. In SACS, a TCAM-based shape search module is first used to determine a subset of possible matching prefixes, and then a SRM-based content search module is used on the subset to find the longest matching prefix. For SACS, we propose a first shrinking least load algorithm to pack large amounts of shapes of name prefixes in a small TCAM. A shape of a name prefix is a sequence of its component lengths. We also propose a dual fingerprint-based hash table to improve the content search performance in SRAMs. Experimental results demonstrate that SACS outperforms state-of-the-art schemes by achieving up to 2.4X higher lookup throughput, up to 53% lower memory cost, and up to 96% higher insert throughput.","PeriodicalId":222290,"journal":{"name":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2018.8624182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Name prefix lookup is a core function in Named Data Networking (NDN). It is challenging to perform high-speed name-based longest prefix match lookups against a large amount of variable-length, hierarchical name prefixes in NDN. However, prior work concentrates on software-based name prefix lookup, and can't satisfy the scalability demands of high-speed lookups, low memory cost, and fast incremental updates. In this paper, we propose a hybrid approach to scalable name prefix lookup with hardware and software. We propose SACS, a shape and content search framework with ternary content addressable memories (TCAMs) and static random memory access memories (SRAMs). SACS aims to achieve high-speed lookups and low memory cost, while sustaining fast incremental updates. In SACS, a TCAM-based shape search module is first used to determine a subset of possible matching prefixes, and then a SRM-based content search module is used on the subset to find the longest matching prefix. For SACS, we propose a first shrinking least load algorithm to pack large amounts of shapes of name prefixes in a small TCAM. A shape of a name prefix is a sequence of its component lengths. We also propose a dual fingerprint-based hash table to improve the content search performance in SRAMs. Experimental results demonstrate that SACS outperforms state-of-the-art schemes by achieving up to 2.4X higher lookup throughput, up to 53% lower memory cost, and up to 96% higher insert throughput.
可扩展名称前缀查找的混合方法
名称前缀查找是NDN (Named Data Networking)的核心功能。在NDN中,针对大量变长、分层的名称前缀执行高速的基于名称的最长前缀匹配查找是一项挑战。然而,先前的工作主要集中在基于软件的名称前缀查找上,不能满足高速查找、低内存成本和快速增量更新的可伸缩性需求。在本文中,我们提出了一种基于硬件和软件的可扩展名称前缀查找的混合方法。我们提出了SACS,一个具有三元内容可寻址存储器(TCAMs)和静态随机存储器访问存储器(sram)的形状和内容搜索框架。SACS旨在实现高速查找和低内存成本,同时保持快速增量更新。在SACS中,首先使用基于tcam的形状搜索模块来确定可能匹配前缀的子集,然后在该子集上使用基于srm的内容搜索模块来查找最长匹配前缀。对于SACS,我们提出了一种压缩最小负载算法,在一个小的TCAM中封装大量形状的名称前缀。名称前缀的形状是其组件长度的序列。我们还提出了一种基于双指纹的哈希表来提高ram的内容搜索性能。实验结果表明,SACS通过实现高达2.4倍的查找吞吐量,高达53%的内存成本和高达96%的插入吞吐量,优于最先进的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信