An efficient face recognition approach using PCA and minimum distance classifier

Soumen Bag, G. Sanyal
{"title":"An efficient face recognition approach using PCA and minimum distance classifier","authors":"Soumen Bag, G. Sanyal","doi":"10.1109/ICIIP.2011.6108906","DOIUrl":null,"url":null,"abstract":"Facial expressions convey non-verbal cues, which play an important role in interpersonal relations. Automatic recognition of human face based on facial expression can be an important component of natural human-machine interface. It may also be used in behavioral science. Although human being can recognize the face practically without any effort, but reliable face recognition by machine is a challenge. This paper presents a new approach for recognizing the face of a person considering the expression of the same human face at different instances of time. This methodology is developed by combining principle component analysis (PCA) for feature extraction and minimum distance classifier (MDC) for classification. Experiment is done on AT&T dataset and the recognition rate achieves to 96.7% for different facial expressions.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"309 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Facial expressions convey non-verbal cues, which play an important role in interpersonal relations. Automatic recognition of human face based on facial expression can be an important component of natural human-machine interface. It may also be used in behavioral science. Although human being can recognize the face practically without any effort, but reliable face recognition by machine is a challenge. This paper presents a new approach for recognizing the face of a person considering the expression of the same human face at different instances of time. This methodology is developed by combining principle component analysis (PCA) for feature extraction and minimum distance classifier (MDC) for classification. Experiment is done on AT&T dataset and the recognition rate achieves to 96.7% for different facial expressions.
基于PCA和最小距离分类器的高效人脸识别方法
面部表情传递非语言暗示,在人际关系中起着重要作用。基于面部表情的人脸自动识别是自然人机界面的重要组成部分。它也可以用于行为科学。虽然人类几乎可以毫不费力地识别人脸,但机器对人脸的可靠识别是一个挑战。本文提出了一种新的人脸识别方法,该方法考虑了同一人脸在不同时间点的表情。该方法结合了主成分分析(PCA)的特征提取和最小距离分类器(MDC)的分类。在AT&T数据集上进行实验,对不同面部表情的识别率达到96.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信