Research on Multi-feature Extraction Method in EEG Signal of Motor Imagination

Li Dezhi, Zhang Xintong, Geng Xiaozhong
{"title":"Research on Multi-feature Extraction Method in EEG Signal of Motor Imagination","authors":"Li Dezhi, Zhang Xintong, Geng Xiaozhong","doi":"10.1109/ICVRIS51417.2020.00116","DOIUrl":null,"url":null,"abstract":"The feature extraction of EEG signals of motor imaging is a very important step in the brain-computer interface system. We usually use the event-related synchronization/desynchronization (ERS/ERD) phenomenon of EEG signals, and use common motor imagination EEG signal’s feature extraction processing algorithms, including Common Spatial Pattern (CSP), Power Spectral Density (PSD), Autoregressive model (AR), Discrete Wavelet Transform DWT) method and other methods to extract features of EEG signals. This paper expounds the basic principle of the algorithm, and finally uses the support vector machine (SVM) to classify the left-hand and right-hand motor imagery patterns after processing the four methods. Comparative experiments show that the feature extraction method of multi-feature fusion better represents EEG features, and a better classification effect can be achieved by using SUM classification. This study can meet the requirements of BCI for high recognition rate.","PeriodicalId":162549,"journal":{"name":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS51417.2020.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The feature extraction of EEG signals of motor imaging is a very important step in the brain-computer interface system. We usually use the event-related synchronization/desynchronization (ERS/ERD) phenomenon of EEG signals, and use common motor imagination EEG signal’s feature extraction processing algorithms, including Common Spatial Pattern (CSP), Power Spectral Density (PSD), Autoregressive model (AR), Discrete Wavelet Transform DWT) method and other methods to extract features of EEG signals. This paper expounds the basic principle of the algorithm, and finally uses the support vector machine (SVM) to classify the left-hand and right-hand motor imagery patterns after processing the four methods. Comparative experiments show that the feature extraction method of multi-feature fusion better represents EEG features, and a better classification effect can be achieved by using SUM classification. This study can meet the requirements of BCI for high recognition rate.
运动想象脑电信号多特征提取方法研究
运动成像脑电信号的特征提取是脑机接口系统中非常重要的一步。我们通常利用脑电信号的事件相关同步/去同步(ERS/ERD)现象,并使用常用的运动想象脑电信号的特征提取处理算法,包括公共空间模式(CSP)、功率谱密度(PSD)、自回归模型(AR)、离散小波变换(DWT)方法等方法提取脑电信号的特征。本文阐述了算法的基本原理,最后利用支持向量机(SVM)对四种方法进行处理后,对左手和右手运动图像模式进行分类。对比实验表明,多特征融合的特征提取方法能更好地表征脑电特征,采用SUM分类能获得更好的分类效果。本研究能够满足脑机接口对高识别率的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信