Shadow Puppetry Classification Using Convolutional Neural Networks

MingYun He, Xinhao Song, Ping Kuang, Fan Li, Haoshuang Wang
{"title":"Shadow Puppetry Classification Using Convolutional Neural Networks","authors":"MingYun He, Xinhao Song, Ping Kuang, Fan Li, Haoshuang Wang","doi":"10.1109/ICCWAMTIP.2018.8632562","DOIUrl":null,"url":null,"abstract":"Shadow play is an attractive part of Chinese traditional folk art however the recognition of shadow play characters is a tough work for an ordinary people. Recent year, because neural networks have a preeminent performance on object classification, we try to use different CNN architectures to solve such task. Commonly, big dataset is necessary for training CNN but our original dataset is quite small. To solve the problem, we did data augmentation by graphic transformation. After comparing the accuracy of different models, experimental results show that ResNet can achieve a high classification effect in the shadow puppetry character dataset.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Shadow play is an attractive part of Chinese traditional folk art however the recognition of shadow play characters is a tough work for an ordinary people. Recent year, because neural networks have a preeminent performance on object classification, we try to use different CNN architectures to solve such task. Commonly, big dataset is necessary for training CNN but our original dataset is quite small. To solve the problem, we did data augmentation by graphic transformation. After comparing the accuracy of different models, experimental results show that ResNet can achieve a high classification effect in the shadow puppetry character dataset.
基于卷积神经网络的皮影戏分类
皮影戏是中国传统民间艺术中极具吸引力的一部分,然而对普通人来说,皮影戏人物的识别却是一项艰巨的工作。近年来,由于神经网络在目标分类方面的突出表现,我们尝试使用不同的CNN架构来解决这类任务。通常,训练CNN需要大数据集,但我们的原始数据集非常小。为了解决这个问题,我们通过图形变换进行了数据扩充。通过对不同模型的准确率进行比较,实验结果表明,ResNet在皮影戏人物数据集上能够取得较高的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信