The Optimization of RSSI-Neural Network Positioning Algorithm

Zhang Xuhui, Gao Baojiang, L. Yukun, Wang Juan, Chang Huimin
{"title":"The Optimization of RSSI-Neural Network Positioning Algorithm","authors":"Zhang Xuhui, Gao Baojiang, L. Yukun, Wang Juan, Chang Huimin","doi":"10.1109/IMCCC.2014.135","DOIUrl":null,"url":null,"abstract":"This paper optimized the RSSI neural network positioning algorithm. In-depth analysis of the principles of the Kalman filter and using the Kalman filter to filter the Received Signal Strength Indicator (RSSI) value. Analysis the structure of back propagation neural network and optimized the structure of the RSSI-neural network algorithm. MATLAB simulation verified the optimization algorithm has higher accuracy and more robustness.","PeriodicalId":152074,"journal":{"name":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2014.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper optimized the RSSI neural network positioning algorithm. In-depth analysis of the principles of the Kalman filter and using the Kalman filter to filter the Received Signal Strength Indicator (RSSI) value. Analysis the structure of back propagation neural network and optimized the structure of the RSSI-neural network algorithm. MATLAB simulation verified the optimization algorithm has higher accuracy and more robustness.
rssi -神经网络定位算法的优化
本文对RSSI神经网络定位算法进行了优化。深入分析了卡尔曼滤波器的原理,并利用卡尔曼滤波器对接收信号强度指标(RSSI)值进行滤波。分析了反向传播神经网络的结构,优化了rssi -神经网络算法的结构。MATLAB仿真验证了优化算法具有更高的精度和更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信