Generalized Notions in Geometry and Duality

D. W. Fountain, F. Lewis
{"title":"Generalized Notions in Geometry and Duality","authors":"D. W. Fountain, F. Lewis","doi":"10.23919/ACC.1989.4790543","DOIUrl":null,"url":null,"abstract":"We show the dynamical significance of the subspaces generated by the steps of the recursions for the supremal (A, E, Image(B))-invariant subspace and the infimal almost controllability subspace for discrete-time singular systems. We also show the dynamical interpretation of these recursions when performed on the dual system. We thus give duality results for subspaces computed from the original system matrices. Our approach should be contrasted with previous results which give duality results in terms of (different) subspaces computed from a slow/fast decomposition of the system.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show the dynamical significance of the subspaces generated by the steps of the recursions for the supremal (A, E, Image(B))-invariant subspace and the infimal almost controllability subspace for discrete-time singular systems. We also show the dynamical interpretation of these recursions when performed on the dual system. We thus give duality results for subspaces computed from the original system matrices. Our approach should be contrasted with previous results which give duality results in terms of (different) subspaces computed from a slow/fast decomposition of the system.
几何和对偶中的广义概念
给出了离散奇异系统的最高(A, E, Image(B))不变子空间和最低几乎可控子空间的递推步生成的子空间的动力学意义。我们还展示了这些递归在对偶系统上执行时的动态解释。因此,我们给出了由原系统矩阵计算出的子空间的对偶结果。我们的方法应该与之前的结果进行对比,这些结果给出了根据系统的慢/快分解计算的(不同)子空间的对偶结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信