Tomohiro Shimizu, Ryo Hachiuma, H. Saito, Takashi Yoshikawa, Chonho Lee
{"title":"Prediction of Future Shot Direction using Pose and Position of Tennis Player","authors":"Tomohiro Shimizu, Ryo Hachiuma, H. Saito, Takashi Yoshikawa, Chonho Lee","doi":"10.1145/3347318.3355523","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to predict the future shot direction in a tennis match using pose information and player position. As far as we know, there is no work that deals with such a predictive task, so there is no shot direction dataset as yet. Therefore, using a YouTube tennis match video, we construct an time of impact and shot direction dataset. To reduce annotation costs, we propose a method to automatically label the shot direction. Moreover, we propose a method to predict the future shot direction using the constructed dataset. The shot direction is predicted using LSTM(long short-time memory), from sequential pose information up to the time of impact and the player position. We employ OpenPose to extract the position of skeleton joints. In the experiment, we evaluate the accuracy of shot direction prediction and verify the effectiveness of the proposed method. Since there are no studies that predict future shot direction, we set four baseline methods to evaluate the effectiveness of our proposed method.","PeriodicalId":322390,"journal":{"name":"MMSports '19","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMSports '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3347318.3355523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, we propose a method to predict the future shot direction in a tennis match using pose information and player position. As far as we know, there is no work that deals with such a predictive task, so there is no shot direction dataset as yet. Therefore, using a YouTube tennis match video, we construct an time of impact and shot direction dataset. To reduce annotation costs, we propose a method to automatically label the shot direction. Moreover, we propose a method to predict the future shot direction using the constructed dataset. The shot direction is predicted using LSTM(long short-time memory), from sequential pose information up to the time of impact and the player position. We employ OpenPose to extract the position of skeleton joints. In the experiment, we evaluate the accuracy of shot direction prediction and verify the effectiveness of the proposed method. Since there are no studies that predict future shot direction, we set four baseline methods to evaluate the effectiveness of our proposed method.