Prediction of Future Shot Direction using Pose and Position of Tennis Player

Tomohiro Shimizu, Ryo Hachiuma, H. Saito, Takashi Yoshikawa, Chonho Lee
{"title":"Prediction of Future Shot Direction using Pose and Position of Tennis Player","authors":"Tomohiro Shimizu, Ryo Hachiuma, H. Saito, Takashi Yoshikawa, Chonho Lee","doi":"10.1145/3347318.3355523","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to predict the future shot direction in a tennis match using pose information and player position. As far as we know, there is no work that deals with such a predictive task, so there is no shot direction dataset as yet. Therefore, using a YouTube tennis match video, we construct an time of impact and shot direction dataset. To reduce annotation costs, we propose a method to automatically label the shot direction. Moreover, we propose a method to predict the future shot direction using the constructed dataset. The shot direction is predicted using LSTM(long short-time memory), from sequential pose information up to the time of impact and the player position. We employ OpenPose to extract the position of skeleton joints. In the experiment, we evaluate the accuracy of shot direction prediction and verify the effectiveness of the proposed method. Since there are no studies that predict future shot direction, we set four baseline methods to evaluate the effectiveness of our proposed method.","PeriodicalId":322390,"journal":{"name":"MMSports '19","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMSports '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3347318.3355523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a method to predict the future shot direction in a tennis match using pose information and player position. As far as we know, there is no work that deals with such a predictive task, so there is no shot direction dataset as yet. Therefore, using a YouTube tennis match video, we construct an time of impact and shot direction dataset. To reduce annotation costs, we propose a method to automatically label the shot direction. Moreover, we propose a method to predict the future shot direction using the constructed dataset. The shot direction is predicted using LSTM(long short-time memory), from sequential pose information up to the time of impact and the player position. We employ OpenPose to extract the position of skeleton joints. In the experiment, we evaluate the accuracy of shot direction prediction and verify the effectiveness of the proposed method. Since there are no studies that predict future shot direction, we set four baseline methods to evaluate the effectiveness of our proposed method.
利用网球运动员的姿势和位置预测未来击球方向
在本文中,我们提出了一种利用姿势信息和球员位置来预测网球比赛中未来击球方向的方法。据我们所知,目前还没有处理这种预测任务的工作,所以目前还没有射击方向数据集。因此,我们以一段YouTube网球比赛视频为例,构建了一个冲击时间和击球方向数据集。为了降低标注成本,提出了一种自动标注拍摄方向的方法。此外,我们还提出了一种利用构建的数据集预测未来射击方向的方法。使用LSTM(长短时记忆)预测击球方向,从连续的姿势信息到击球时间和球员位置。我们使用OpenPose来提取骨骼关节的位置。在实验中,我们评估了射击方向预测的准确性,并验证了该方法的有效性。由于没有研究预测未来的投篮方向,我们设置了四个基线方法来评估我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信