Kleanthis Avramidis, Tiantian Feng, Digbalay Bose, Shrikanth S. Narayanan
{"title":"Multimodal Estimation Of Change Points Of Physiological Arousal During Driving","authors":"Kleanthis Avramidis, Tiantian Feng, Digbalay Bose, Shrikanth S. Narayanan","doi":"10.1109/ICASSPW59220.2023.10193718","DOIUrl":null,"url":null,"abstract":"Detecting unsafe driving states, such as stress, drowsiness, and fatigue, is an important component of ensuring driving safety and an essential prerequisite for automatic intervention systems in vehicles. These concerning conditions are primarily connected to the driver’s low or high arousal levels. In this study, we describe a framework for processing multimodal physiological time-series from wearable sensors during driving and locating points of prominent change in drivers’ physiological arousal. These points of change could potentially indicate events that require just-in-time intervention. We apply time-series segmentation on heart rate and breathing rate measurements and quantify their robustness in capturing change points in electrodermal activity, treated as a reference index for arousal, as well as on self-reported stress ratings, using three public datasets. Our experiments demonstrate that physiological measures are veritable indicators of change points of arousal.11Code and results available at https://github.com/usc-sail/ggs driving","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting unsafe driving states, such as stress, drowsiness, and fatigue, is an important component of ensuring driving safety and an essential prerequisite for automatic intervention systems in vehicles. These concerning conditions are primarily connected to the driver’s low or high arousal levels. In this study, we describe a framework for processing multimodal physiological time-series from wearable sensors during driving and locating points of prominent change in drivers’ physiological arousal. These points of change could potentially indicate events that require just-in-time intervention. We apply time-series segmentation on heart rate and breathing rate measurements and quantify their robustness in capturing change points in electrodermal activity, treated as a reference index for arousal, as well as on self-reported stress ratings, using three public datasets. Our experiments demonstrate that physiological measures are veritable indicators of change points of arousal.11Code and results available at https://github.com/usc-sail/ggs driving