{"title":"Conformal nets are factorization\n algebras","authors":"A. Henriques","doi":"10.1090/pspum/098/01749","DOIUrl":null,"url":null,"abstract":"We prove that conformal nets of finite index are an instance of the notion of a factorization algebra. This result is an ingredient in our proof that, for $G=SU(n)$, the Drinfel'd center of the category of positive energy representations of the based loop group is equivalent to the category of positive energy representations of the free loop group.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/098/01749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We prove that conformal nets of finite index are an instance of the notion of a factorization algebra. This result is an ingredient in our proof that, for $G=SU(n)$, the Drinfel'd center of the category of positive energy representations of the based loop group is equivalent to the category of positive energy representations of the free loop group.