DONSKER'S THEOREM FOR DISCRETIZED DATA

Y. Nishiyama
{"title":"DONSKER'S THEOREM FOR DISCRETIZED DATA","authors":"Y. Nishiyama","doi":"10.14490/JJSS.38.505","DOIUrl":null,"url":null,"abstract":"Inspired by Doob’s suggestion in 1949, Donsker (1952) proved the Kolmogorov-Smirnov theorem in an elegant way via the functional central limit theorem (the invariance principle). In that theorem, the underlying distribution is assumed to be a continuous distribution. On the other hand, real data in practice is always given in a discretized (rounded) form. In this paper, we establish an invariance principle for discretized data in the fashion of the modern empirical process theory to obtain a (right) Kolmogorov-Smirnov test for discretized data. To illustrate our problem let us begin with the most basic example. We denote by F0 the uniform distribution on [0, 1]. Let {X1, . . . , Xn} be an independent sequence of [0, 1]-valued random variables with the common law F0. Set δn = 0.01. Suppose that we can actually observe the data {X i } which is discretized (rounded) up to δn: X1 = 0.67774205 X 1 = 0.68 X2 = 0.81124449 X 2 = 0.81 · · · Xn = 0.61694806 X n = 0.62. We denote by F̂n and F̂ n the empirical distribution functions of {X1, . . . , Xn} and {X 1 , . . . , X n}, respectively. Then, the Kolmogorov-Smirnov statistic Dn = sup t∈[0,1] n|F̂n(t) − F0(t)| converges in distribution to supu∈[0,1] |B◦(u)|, where u ❀ B◦(u) is a standard Brownian bridge. On the other hand, as we will show below, if δn = o(n −1/2), the test statistic D n = sup t∈[0,1] n|F̂ n(t) − F0(t)|","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.38.505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inspired by Doob’s suggestion in 1949, Donsker (1952) proved the Kolmogorov-Smirnov theorem in an elegant way via the functional central limit theorem (the invariance principle). In that theorem, the underlying distribution is assumed to be a continuous distribution. On the other hand, real data in practice is always given in a discretized (rounded) form. In this paper, we establish an invariance principle for discretized data in the fashion of the modern empirical process theory to obtain a (right) Kolmogorov-Smirnov test for discretized data. To illustrate our problem let us begin with the most basic example. We denote by F0 the uniform distribution on [0, 1]. Let {X1, . . . , Xn} be an independent sequence of [0, 1]-valued random variables with the common law F0. Set δn = 0.01. Suppose that we can actually observe the data {X i } which is discretized (rounded) up to δn: X1 = 0.67774205 X 1 = 0.68 X2 = 0.81124449 X 2 = 0.81 · · · Xn = 0.61694806 X n = 0.62. We denote by F̂n and F̂ n the empirical distribution functions of {X1, . . . , Xn} and {X 1 , . . . , X n}, respectively. Then, the Kolmogorov-Smirnov statistic Dn = sup t∈[0,1] n|F̂n(t) − F0(t)| converges in distribution to supu∈[0,1] |B◦(u)|, where u ❀ B◦(u) is a standard Brownian bridge. On the other hand, as we will show below, if δn = o(n −1/2), the test statistic D n = sup t∈[0,1] n|F̂ n(t) − F0(t)|
离散数据的Donsker定理
Donsker(1952)在1949年受到Doob建议的启发,通过泛函中心极限定理(不变性原理)以一种优雅的方式证明了Kolmogorov-Smirnov定理。在这个定理中,底层分布被假设为连续分布。另一方面,实际数据总是以离散(四舍五入)的形式给出。本文采用现代经验过程理论的方法,建立了离散数据的不变性原理,得到了离散数据的(正确的)Kolmogorov-Smirnov检验。为了说明我们的问题,让我们从最基本的例子开始。我们用F0表示[0,1]上的均匀分布。设{X1,…, Xn}为具有公律F0的[0,1]个随机变量的独立序列。设δn = 0.01。假设我们实际上可以观察到离散(四舍五入)到δn的数据{X i}: X1 = 0.67774205 X1 = 0.68 X2 = 0.81124449 X2 = 0.81···Xn = 0.61694806 Xn = 0.62。我们用F n和F n表示{X1,…的经验分布函数。, Xn}和{X 1,…, X n}。然后,Kolmogorov-Smirnov统计量Dn = sup t∈[0,1]n|F∈n(t)−F0(t)|在分布上收敛到supu∈[0,1]|B◦(u)|,其中u君- B◦(u)是一个标准布朗桥。另一方面,如下所示,如果δn = 0(n−1/2),则检验统计量D n = sup t∈[0,1]n|F n(t)−F0(t)|
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信