Risk-Based Portfolio Optimization in the Cryptocurrency World

Tobias Burggraf
{"title":"Risk-Based Portfolio Optimization in the Cryptocurrency World","authors":"Tobias Burggraf","doi":"10.2139/ssrn.3454764","DOIUrl":null,"url":null,"abstract":"This study explores the performance of seven state-of-the-art risk-based portfolio optimization strategies from the perspective of a cryptocurrency investor. Analyzing the inverse volatility, minimum variance, l2-norm constrained minimum variance, l2-norm constrained maximum decorrelation, maximum diversification and risk parity portfolio, we find that most strategies systematically outperform individual cryptocurrencies and the equally-weighted benchmark portfolio. Further, a bull and bear market performance comparison as well as tail, extreme risk, and diversification analyses reveal that these strategies provide significant downside risk reduction. The results are robust to using different estimation windows, rebalancing periods and covariance estimation methodologies. Finally, our empirical results indicate that the maximum decorrelation portfolio is the worst strategy in terms of risk-adjusted return, while the long-only minimum variance portfolio is the best performing strategy.","PeriodicalId":400187,"journal":{"name":"EnergyRN: Energy Economics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyRN: Energy Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3454764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This study explores the performance of seven state-of-the-art risk-based portfolio optimization strategies from the perspective of a cryptocurrency investor. Analyzing the inverse volatility, minimum variance, l2-norm constrained minimum variance, l2-norm constrained maximum decorrelation, maximum diversification and risk parity portfolio, we find that most strategies systematically outperform individual cryptocurrencies and the equally-weighted benchmark portfolio. Further, a bull and bear market performance comparison as well as tail, extreme risk, and diversification analyses reveal that these strategies provide significant downside risk reduction. The results are robust to using different estimation windows, rebalancing periods and covariance estimation methodologies. Finally, our empirical results indicate that the maximum decorrelation portfolio is the worst strategy in terms of risk-adjusted return, while the long-only minimum variance portfolio is the best performing strategy.
加密货币世界基于风险的投资组合优化
本研究从加密货币投资者的角度探讨了七种最先进的基于风险的投资组合优化策略的表现。分析了逆波动率、最小方差、十二范数约束最小方差、十二范数约束最大去相关、最大多样化和风险平价组合,我们发现大多数策略系统地优于单个加密货币和等加权基准组合。此外,牛市和熊市的表现比较以及尾部、极端风险和多样化分析表明,这些策略提供了显著的下行风险降低。结果对使用不同的估计窗口、再平衡周期和协方差估计方法都具有鲁棒性。最后,我们的实证结果表明,就风险调整收益而言,最大去相关投资组合是最差的策略,而只做多的最小方差投资组合是表现最佳的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信