Sequence and Distance Aware Transformer for Recommendation Systems

Runqiang Zang, Meiyun Zuo, Jilei Zhou, Yining Xue, Keman Huang
{"title":"Sequence and Distance Aware Transformer for Recommendation Systems","authors":"Runqiang Zang, Meiyun Zuo, Jilei Zhou, Yining Xue, Keman Huang","doi":"10.1109/ICWS53863.2021.00027","DOIUrl":null,"url":null,"abstract":"Transformer has achieved admirable success in sequential tasks. However, the model only considers the order of items in the sequence, not the relative distances, which weakens the relevance between items. To this end, we propose a novel Sequence and Distance Aware Transformer (SDAT) for recommendation systems. Specifically, we first apply the Transformer to handle the interaction between the items effectively. Then, Gated Recurrent Unit can be designed to aggregate information on an item-by-item basis in sequential information, meanwhile, we adopt the attention mechanism to focus on items with smaller time intervals to indicate high relevance. We also add a time gain function to augment the influence weight of recent items. Finally, the processing result of the time information of our integrated items replaces the positional encoding representation of the original Transformer. Extensive experiments on three real-world datasets show that SDAT outperforms state-of-the-art methods.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Transformer has achieved admirable success in sequential tasks. However, the model only considers the order of items in the sequence, not the relative distances, which weakens the relevance between items. To this end, we propose a novel Sequence and Distance Aware Transformer (SDAT) for recommendation systems. Specifically, we first apply the Transformer to handle the interaction between the items effectively. Then, Gated Recurrent Unit can be designed to aggregate information on an item-by-item basis in sequential information, meanwhile, we adopt the attention mechanism to focus on items with smaller time intervals to indicate high relevance. We also add a time gain function to augment the influence weight of recent items. Finally, the processing result of the time information of our integrated items replaces the positional encoding representation of the original Transformer. Extensive experiments on three real-world datasets show that SDAT outperforms state-of-the-art methods.
推荐系统中的顺序和距离感知变压器
Transformer在顺序任务中取得了令人钦佩的成功。然而,该模型只考虑项目在序列中的顺序,而不考虑相对距离,这削弱了项目之间的相关性。为此,我们提出了一种用于推荐系统的序列和距离感知变压器(SDAT)。具体地说,我们首先应用Transformer来有效地处理项之间的交互。然后,可以设计门控循环单元,在序列信息中逐项聚合信息,同时,我们采用注意机制,将注意力集中在时间间隔较小的项目上,以表明高相关性。我们还添加了一个时间增益函数来增加最近项目的影响权重。最后,我们集成项目的时间信息的处理结果替换了原始Transformer的位置编码表示。在三个真实世界数据集上的广泛实验表明,SDAT优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信