A Method with Universal Transformer for Multimodal Sentiment Analysis

Hao Ai, Ying Liu, Jie Fang, Sheikh Faisal Rashid
{"title":"A Method with Universal Transformer for Multimodal Sentiment Analysis","authors":"Hao Ai, Ying Liu, Jie Fang, Sheikh Faisal Rashid","doi":"10.1145/3573942.3573968","DOIUrl":null,"url":null,"abstract":"Multimodal sentiment analysis refers to the use of computers to analyze and identify the emotions that people want to express through the extracted multimodal sentiment features, and it plays a significant role in human-computer interaction and financial market prediction. Most existing approaches to multimodal sentiment analysis use contextual information for modeling, and while this modeling approach can effectively capture the contextual connections within modalities, the correlations between modalities are often overlooked, and the correlations between modalities are also critical to the final recognition results in multimodal sentiment analysis. Therefore, this paper proposes a multimodal sentiment analysis approach based on the universal transformer, a framework that uses the universal transformer to model the connections between multiple modalities while employing effective feature extraction methods to capture the contextual connections of individual modalities. We evaluated our proposed method on two benchmark datasets for multimodal sentiment analysis, CMU-MOSI and CMU-MOSEI, and the results outperformed other methods of the same type.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal sentiment analysis refers to the use of computers to analyze and identify the emotions that people want to express through the extracted multimodal sentiment features, and it plays a significant role in human-computer interaction and financial market prediction. Most existing approaches to multimodal sentiment analysis use contextual information for modeling, and while this modeling approach can effectively capture the contextual connections within modalities, the correlations between modalities are often overlooked, and the correlations between modalities are also critical to the final recognition results in multimodal sentiment analysis. Therefore, this paper proposes a multimodal sentiment analysis approach based on the universal transformer, a framework that uses the universal transformer to model the connections between multiple modalities while employing effective feature extraction methods to capture the contextual connections of individual modalities. We evaluated our proposed method on two benchmark datasets for multimodal sentiment analysis, CMU-MOSI and CMU-MOSEI, and the results outperformed other methods of the same type.
基于通用变压器的多模态情感分析方法
多模态情感分析是指利用计算机通过提取的多模态情感特征来分析和识别人们想要表达的情感,在人机交互和金融市场预测中具有重要作用。现有的多模态情感分析方法大多使用上下文信息进行建模,虽然这种建模方法可以有效地捕捉模态内部的上下文联系,但模态之间的相关性往往被忽视,而模态之间的相关性对多模态情感分析的最终识别结果也至关重要。因此,本文提出了一种基于通用变压器的多模态情感分析方法,该框架使用通用变压器对多个模态之间的连接进行建模,同时采用有效的特征提取方法捕获单个模态的上下文连接。我们在两个多模态情感分析基准数据集(CMU-MOSI和CMU-MOSEI)上对所提出的方法进行了评估,结果优于其他同类型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信