The Grothendieck Constant is Strictly Smaller than Krivine's Bound

M. Braverman, K. Makarychev, Yury Makarychev, A. Naor
{"title":"The Grothendieck Constant is Strictly Smaller than Krivine's Bound","authors":"M. Braverman, K. Makarychev, Yury Makarychev, A. Naor","doi":"10.1017/fmp.2013.4","DOIUrl":null,"url":null,"abstract":"The classical Grothendieck constant, denoted $K_G$, is equal to the integrality gap of the natural semi definite relaxation of the problem of computing$$\\max \\{\\sum_{i=1}^m\\sum_{j=1}^n a_{ij} \\epsilon_i\\delta_j: \\{\\epsilon_i\\}_{i=1}^m,\\{\\delta_j\\}_{j=1}^n\\subseteq \\{-1,1\\}\\},$$a generic and well-studied optimization problem with many applications. Krivine proved in 1977 that $K_G\\leq \\pi / (2\\log(1+\\sqrt{2}))$ and conjectured that his estimate is sharp. We obtain a sharper Grothendieck inequality, showing that $K_G 0$. Our main contribution is conceptual: despite dealing with a binary rounding problem, random 2-dimensional projections combined with a careful partition of $R^2$ in order to round the projected vectors, beat the random hyper plane technique, contrary to Krivine's long-standing conjecture.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/fmp.2013.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

The classical Grothendieck constant, denoted $K_G$, is equal to the integrality gap of the natural semi definite relaxation of the problem of computing$$\max \{\sum_{i=1}^m\sum_{j=1}^n a_{ij} \epsilon_i\delta_j: \{\epsilon_i\}_{i=1}^m,\{\delta_j\}_{j=1}^n\subseteq \{-1,1\}\},$$a generic and well-studied optimization problem with many applications. Krivine proved in 1977 that $K_G\leq \pi / (2\log(1+\sqrt{2}))$ and conjectured that his estimate is sharp. We obtain a sharper Grothendieck inequality, showing that $K_G 0$. Our main contribution is conceptual: despite dealing with a binary rounding problem, random 2-dimensional projections combined with a careful partition of $R^2$ in order to round the projected vectors, beat the random hyper plane technique, contrary to Krivine's long-standing conjecture.
格罗滕迪克常数严格小于克里文界
经典的格罗滕迪克常数,记为$K_G$,等于计算问题$$\max \{\sum_{i=1}^m\sum_{j=1}^n a_{ij} \epsilon_i\delta_j: \{\epsilon_i\}_{i=1}^m,\{\delta_j\}_{j=1}^n\subseteq \{-1,1\}\},$$的自然半确定松弛的完整性间隙,这是一个广泛研究的优化问题,有许多应用。Krivine在1977年证明了$K_G\leq \pi / (2\log(1+\sqrt{2}))$,并推测他的估计是准确的。我们得到一个更清晰的格罗滕迪克不等式,表明$K_G 0$。我们的主要贡献是概念上的:尽管处理了二进制舍入问题,但随机的二维投影结合$R^2$的仔细划分,以舍入投影向量,击败了随机超平面技术,这与Krivine长期以来的猜想相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信