A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

A. Fidjeland, W. Luk, S. Muggleton
{"title":"A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming","authors":"A. Fidjeland, W. Luk, S. Muggleton","doi":"10.14236/EWIC/VOCS2008.27","DOIUrl":null,"url":null,"abstract":"This paper describes a customisable processor designed to accelerate execution of inductive logic programming, targeting advanced field-programmable gate array (FPGA) technology. The instruction set and the microarchitecture of the processor are optimised for key operations in logic programming, such as unification and backtracking. Such optimisations reduce external memory access to enable performance comparable to current general-purpose processors, even at much lower clock frequencies. Our processor can be customised to a particular program by excluding unnecessary functional and memory units, and by adapting the size of such units to suit the application. These customisations reduce resource usage while improving performance, and enable accommodating multiple processors on a single FPGA. Such multiprocessor parallelism can be exploited by search-oriented applications in machine learning applications. We find that up to 32 processors can fit on an XC2V6000 FPGA. Using this device, the computational kernel of the machine learning system Progol, when applied to common bioinformatics data sets for learning to identify mutagenesis and protein folds, can yield speedups of up to 15 times over software running on a 2.53GHz Pentium-4 machine. The proposed approach appears promising with the advance of field-programmable technology: the more recent XC4VLX160 device would be capable of supporting up to 65 processors.","PeriodicalId":247606,"journal":{"name":"BCS International Academic Conference","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BCS International Academic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14236/EWIC/VOCS2008.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a customisable processor designed to accelerate execution of inductive logic programming, targeting advanced field-programmable gate array (FPGA) technology. The instruction set and the microarchitecture of the processor are optimised for key operations in logic programming, such as unification and backtracking. Such optimisations reduce external memory access to enable performance comparable to current general-purpose processors, even at much lower clock frequencies. Our processor can be customised to a particular program by excluding unnecessary functional and memory units, and by adapting the size of such units to suit the application. These customisations reduce resource usage while improving performance, and enable accommodating multiple processors on a single FPGA. Such multiprocessor parallelism can be exploited by search-oriented applications in machine learning applications. We find that up to 32 processors can fit on an XC2V6000 FPGA. Using this device, the computational kernel of the machine learning system Progol, when applied to common bioinformatics data sets for learning to identify mutagenesis and protein folds, can yield speedups of up to 15 times over software running on a 2.53GHz Pentium-4 machine. The proposed approach appears promising with the advance of field-programmable technology: the more recent XC4VLX160 device would be capable of supporting up to 65 processors.
应用优化归纳逻辑编程的可定制多处理器
针对先进的现场可编程门阵列(FPGA)技术,本文介绍了一种可定制的处理器,旨在加速归纳逻辑编程的执行。针对逻辑编程中的关键操作,如统一和回溯,对处理器的指令集和微结构进行了优化。这样的优化减少了外部内存访问,即使在更低的时钟频率下,性能也可以与当前的通用处理器相媲美。我们的处理器可以通过排除不必要的功能和存储单元来定制特定的程序,并通过调整这些单元的大小来适应应用程序。这些定制减少了资源使用,同时提高了性能,并能够在单个FPGA上容纳多个处理器。这种多处理器并行性可以在机器学习应用中用于面向搜索的应用。我们发现在XC2V6000 FPGA上最多可以容纳32个处理器。使用该设备,机器学习系统Progol的计算内核,当应用于常见的生物信息学数据集以学习识别突变和蛋白质折叠时,可以产生比运行在2.53GHz Pentium-4机器上的软件高达15倍的速度。随着现场可编程技术的进步,所提出的方法似乎很有希望:最新的XC4VLX160设备将能够支持多达65个处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信